Maple syrup urine disease (MSUD) is an autosomal recessive inborn error of metabolism caused by deficiency of the activity of the mitochondrial enzyme complex branched-chain α-keto acid dehydrogenase (BCKAD) leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine and their corresponding branched-chain α-keto acids. Affected patients present severe brain dysfunction manifested such as ataxia, seizures, coma, psychomotor delay and mental retardation. The mechanisms of brain damage in this disease remain poorly understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. L-Carnitine (L-Car) is considered a potential antioxidant through its action against peroxidation as a scavenger of reactive oxygen species and by its stabilizing effect of damage to cell membranes. In this study we evaluate the possible neuroprotective in vivo effects of L-Car against pro-oxidative effects of BCAA in cerebral cortex of rats. L-Car prevented lipoperoxidation, measured by thiobarbituric acid-reactive substances, protein damage, measured by sulfhydryl and protein carbonyl content and alteration on catalase and glutathione peroxidase activity in rat cortex from a chemically-induced model of MSUD. Our data clearly show that L-Car may be an efficient antioxidant, protecting against the oxidative stress promoted by BCAA. If the present results are confirmed in MSUD patients, this could represent an additional therapeutic approach to the patients affected by this disease.
Phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Clinical features of PKU patients include mental retardation, microcephaly, and seizures. Oxidative stress has been found in these patients, and is possibly related to neurophysiopatology of PKU. Regular exercise can leads to adaptation of antioxidant system, improving its capacity to detoxification reactive species. The aim of this study was to verify the effects of regular exercise on oxidative stress parameters in the brain of hyperphenylalaninemic rats. Animals were divided into sedentary (Sed) and exercise (Exe) groups, and subdivided into saline (SAL) and hyperphenylalaninemia (HPA). HPA groups were induced HPA through administration of alpha-methylphenylalanine and phenylalanine for 17 days, while SAL groups (n = 16-20) received saline. Exe groups conducted 2-week aerobic exercise for 20 min/day. At 18th day, animals were killed and the brain was homogenized to determine thiobarbituric acid reactives substances (TBA-RS) content, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Soleus muscles were collected to determine glycogen content as a marker of oxidative adaptation. Exe groups showed enhanced glycogen content. HPA condition caused an increase in TBA-RS and SOD, and reduces CAT and GPx. Exercise was able to prevent all changes seen in the HPA group, reaching control values, except for SOD activity. No changes were found in the ExeSAL group compared to SedSAL. Hyperphenylalaninemic rats were more responsive to the benefits provided by regular exercise. Physical training may be an interesting strategy to restore the antioxidant system in HPA.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.