Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.
Sex chromosomes have evolved many times in animals and studying these replicate evolutionary "experiments" can help broaden our understanding of the general forces driving the origin and evolution of sex chromosomes. However this plan of study has been hindered by the inability to identify the sex chromosome systems in the large number of species with cryptic, homomorphic sex chromosomes. Restriction site-associated DNA sequencing (RAD-seq) is a critical enabling technology that can identify the sex chromosome systems in many species where traditional cytogenetic methods have failed. Using newly generated RAD-seq data from 12 gecko species, along with data from the literature, we reinterpret the evolution of sex-determining systems in lizards and snakes and test the hypothesis that sex chromosomes can routinely act as evolutionary traps. We uncovered between 17 and 25 transitions among gecko sex-determining systems. This is approximately one-half to two-thirds of the total number of transitions observed among all lizards and snakes. We find support for the hypothesis that sex chromosome systems can readily become trap-like and show that adding even a small number of species from understudied clades can greatly enhance hypothesis testing in a model-based phylogenetic framework. RAD-seq will undoubtedly prove useful in evaluating other species for male or female heterogamety, particularly the majority of fish, amphibian, and reptile species that lack visibly heteromorphic sex chromosomes, and will significantly accelerate the pace of biological discovery.
Sex in reptiles is determined by genes on sex chromosomes or by incubation temperature. Previously these two modes were thought to be distinct, yet we show that high incubation temperatures reverse genotypic males (ZZ) to phenotypic females in a lizard with ZZ and ZW sex chromosomes. Thus, the W chromosome is not necessary for female differentiation. Sex determination is probably via a dosage-sensitive male-determining gene on the Z chromosome that is inactivated by extreme temperatures. Our data invite a novel hypothesis for the evolution of temperature-dependent sex determination (TSD) and suggest that sex chromosomes may exist in many TSD reptiles.
The bearded dragon, Pogona vitticeps (Agamidae: Reptilia) is an agamid lizard endemic to Australia. Like crocodilians and many turtles, temperature-dependent sex determination (TSD) is common in agamid lizards, although many species have genotypic sex determination (GSD). P. vitticeps is reported to have GSD, but no detectable sex chromosomes. Here we used molecular cytogenetic and differential banding techniques to reveal sex chromosomes in this species. Comparative genomic hybridization (CGH), GTG- and C-banding identified a highly heterochromatic microchromosome specific to females, demonstrating female heterogamety (ZZ/ZW) in this species. We isolated the P. vitticeps W chromosome by microdissection, re-amplified the DNA and used it to paint the W. No unpaired bivalents were detected in male synaptonemal complexes at meiotic pachytene, confirming male homogamety. We conclude that P. vitticeps has differentiated previously unidentifable W and Z micro-sex chromosomes, the first to be demonstrated in an agamid lizard. Our finding implies that heterochromatinization of the heterogametic chromosome occurred during sex chromosome differentiation in this species, as is the case in some lizards and many snakes, as well as in birds and mammals. Many GSD reptiles with cryptic sex chromosomes may also prove to have micro-sex chromosomes. Reptile microchromosomes, long dismissed as non-functional minutiae and often omitted from karyotypes, therefore deserve closer scrutiny with new and more sensitive techniques.
The peculiar cytology and unique evolution of sex chromosomes raise many fundamental questions. Why and how sex chromosomes evolved has been debated over a century since H.J. Muller suggested that sex chromosome pairs evolved ultimately from a pair of autosomes. This theory was adapted to explain variations in the snake ZW chromosome pair and later the mammal XY. S. Ohno pointed out similarities between the mammal X and the bird/reptile Z chromosomes forty years ago, but his speculation that they had a common evolutionary origin, or at least evolved from similar regions of the genome, has been undermined by comparative gene mapping, and it is accepted that mammal XY and reptile ZW systems evolved independently from a common ancestor. Here we review evidence for the alternative theory, that ZW<-->XY transitions occurred during evolution, citing examples from fish and amphibians, and probably reptiles. We discuss new work from comparative genomics and cytogenetics that leads to a reconsideration of Ohno's idea and advance a new hypothesis that the mammal XY system may have arisen directly from an ancient reptile ZW system.
Reptiles epitomize the variability of reproductive and sex determining modes and mechanisms among amniotes. These modes include gonochorism (separate sexes) and parthenogenesis, oviparity, viviparity, and ovoviviparity, genotypic sex determination (GSD) with male (XX/XY) and female (ZZ/ZW) heterogamety and temperature-dependent sex determination (TSD). Lizards (order Squamata, suborder Sauria) are particularly fascinating because the distribution of sex-determining mechanisms shows no clear phylogenetic segregation. This implies that there have been multiple transitions between TSD and GSD, and between XY and ZW sex chromosome systems. Approximately 1,000 species of lizards have been karyotyped and among those, fewer than 200 species have sex chromosomes, yet they display remarkable diversity in morphology and degree of degeneration. The high diversity of sex chromosomes as well as the presence of species with TSD, imply multiple and independent origins of sex chromosomes, and suggest that the mechanisms of sex determination are extremely labile in lizards. In this paper, we review the current state of knowledge of sex chromosomes in lizards and the distribution of sex determining mechanisms and sex chromosome forms within and among families. We establish for the first time an association between the occurrence of female heterogamety and TSD within lizard families, and propose mechanisms by which female heterogamety and TSD may have co-evolved. We suggest that lizard sex determination may be much more the result of an interplay between sex chromosomes and temperature than previously thought, such that the sex determination mode is influenced by the nature of heterogamety as well as temperature sensitivity and the stage of sex chromosome degeneration.
The diversity of sex chromosomes among amniotes is the product of independent evolution of different systems in different lineages, defined by novel sex-determining genes. Convergent evolution is very common, suggesting that some genes are particularly adept at taking on a sex-determining role. Comparative gene mapping, and more recently whole genome sequencing, have now turned up other surprising relationships; different regions of the amniote genome that have become sex determining in some taxa seem to share synteny, or share sequence, in others. Is this, after all, evidence that these regions were once linked in a super-sex chromosome that underwent multiple fission in different ways in different amniote lineages? Or does it signify that special properties of sex chromosomes (paucity of active genes, low recombination, epigenetic regulation to achieve dosage compensation) predispose particular chromosomes to a sex-determining role?
Sex in many organisms is a dichotomous phenotype-individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers