The sharing and reuse of digital information has been an important computing concern since the early 1960s. With the advent of the World Wide Web (from now on referred to as the Web), these concerns have become even more central to the effective use of distributed information resources. From its initial roots as an information-sharing tool, the Web has seen exponential growth in a myriad of applications, ranging from very serious e-business to pure leisure environments. Likewise, research into technology support for education has quickly recognised the potential and possibilities for using the Web as a learning tool (Ishaya, Jenkins, & Goussios, 2002). Thus, Web technology is now an established medium for promoting student learning, and today there are a great many online learning materials, tutorials, and courses supported by different learning tools with varying levels of complexity. It can be observed that there are many colleges and universities, each of which teaches certain concepts based on defined principles that remain constant from institution to institution. This results in thousands of similar descriptions of the same concept. This means that institutions spend a lot of resources producing multiple versions of the same learning objects that could be shared at a much lower cost. The Internet is a ubiquitous supporting environment for the sharing of learning materials. As a consequence, many institutions take advantage of the Internet to provide online courses (Ishaya et al.; Jack, Bonk, & Jacobs, 2002; Manouselis, Panagiotu, Psichidou, & Sampson, 2002). Many other agencies have started offering smaller and more portable learning materials defined as learning objects (Harris, 1999; PROMETEUS, 2002). While there are many initiatives for standardising learning technologies (Anido, Fernandez, Caeiro, Santos, Rodriguez, & Llamas, 2002) that will enable reuse and interoperability, there is still a need for the effective management, extraction, and assembling of relevant learning objects for end-user satisfaction.
Developments in the Internet and the World Wide Web (WWW) technologies have led to an evolving trend in Electronic learning (e-learning). E-learning is now one of the most fast growing trends in computing and higher education (Ishaya & Wood, 2005) and certainly becoming a dominant way of learning in workplace settings across other organizations (Mungania, 2003). From its initial roots as an information-sharing tool, the Web has seen an exponential growth into a myriad of applications, ranging from very serious e-business to pure leisure environments. Likewise, research into technology support for education has quickly recognized the potential and possibilities for using the Web as a learning tool (Ishaya, Jenkins, & Goussios, 2002). Thus, the Web technology is now an established medium for promoting student learning, and today there are a great many online learning materials, tutorials, and courses supported by different learning tools with varying levels of complexity. It can be observed that there are many colleges and universities, each of which teaches certain concepts based on defined principles that remain constant from institution to institution. This results in thousands of similar descriptions of the same concept. This means that institutions spend a lot of resources producing multiple versions of the same learning objects that could be shared at much lower cost. The Internet is a ubiquitous supporting environment for sharing of learning materials. As a consequence, many institutions take advantage of the Internet to provide online courses (Ishaya et al., 2002; Jack, Bonk, & Jacobs, 2002; Manouselis, Panagiotou, Psichidou, & Sampson, 2002). Many other agencies have started offering smaller and more portable learning materials defined as learning objects (Harris, 1999; POMETEUS, 2002). Common standards for metadata, learning objects, and services are mandatory for the success of Web-based learning, which is why the creation of such standards for learning objects and related standards has being one of focus for research and development within the past few years. This includes the creation of accredited standards from the IEEE Learning Technology Standards Committee (LTSC) for Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Instructional Management System (IMS), and so on. All these metadata models define how learning materials can be described in an interoperable way. There have also been intensive developments in the area of e-learning technology and the wide variety of learning environments from many different vendors (e.g., Sakai, Moodle, and Blackboard). While most of these approaches provide a means for describing, sharing, and reusing resources, the concept of interoperability and heterogeneous access to content chunks is yet to be fully achieved. This results in thousands of similar descriptions of the same concept, even within the same learning management system (LMS), and because these concepts may have been defined using different standards, they are not interoperable. What is required therefore is a mechanism and infrastructure for supporting a interoperable system of individual components that can be assembled by mixing and matching content from multiple sources to satisfy individual learner’s requirements. See Wood and Ishaya (2005) for a personality-based approach for building learner profiles.
This paper aims to propose an XML-based protocol for two Web Services to utilise TN to establish a trust relationship between them. The main contribution of this protocol is towards preventing failed TN caused by the file format interoperability problem by checking file formats before TN processes. This will increase communication efficiency between WS.
Abstract.Contemporary e-Business applications comprise of dynamic extensible and interoperable collection of services, Web Services and information shared by collaborating entities performing various transactional tasks. Securing these services offerings is therefore of crucial importance. To address security requirements, there has been a plethora of proposed solutions, ranging from hardware devices and security specifications to software applications. Most of these security solutions are largely technology focused with little or no evaluation and integration of policies and procedures of these collaborating entities. This research investigates the use of an approach that integrates documented cross-enterprise policies with current security technology, to enhance the overall security requirements of businesses that decide to use web services. A policy model for enhancing web services security is developed evaluated and presented.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers