Most orthodontic equipment is fabricated from alloys such as stainless steel, Co-Cr and Ni-Ti because of their excellent elastic properties. In recent years, increasing esthetic demands, metal allergy and interference of metals with magnetic resonance imaging have driven the development of non-metallic orthodontic materials. In this study, we assessed the feasibility of using three super engineering plastics (PEEK, PES and PVDF) as orthodontic wires. PES and PVDF demonstrated excellent esthetics, although PEEK showed the highest bending strength and creep resistance. PEEK and PVDF showed quite low water absorption. Because of recent developments in coloration of PEEK, we conclude that PEEK has many advantageous properties that make it a suitable candidate for use as an esthetic metal-free orthodontic wire.
The effects of contamination and cleaning methods on bonding of self-adhesive resin cement to zirconia ceramics were examined. Airborne particle-abraded zirconia (Zpex Smile) specimens were divided into the following four groups: control (con), contaminated with saliva and cleaned with tap water (HS), cleaned with Ivoclean (IC), and cleaned with Multi Etchant (ME). The pretreated specimens were bonded using three self-adhesive resin cements, and tensile bond strengths were measured using a universal testing machine at a crosshead speed of 2 mm/min. Con and IC groups showed significantly higher bond strength than those of HS and ME groups. Separately, the surface chemical composition of the groups was determined using X-ray photoelectron spectroscopy (XPS). XPS revealed that the N/Zr ratio increased in the HS group but decreased in the IC and ME groups. Cleaning agents can improve the adverse effect of saliva contamination on zirconia, but this effect varies depending on the product.
The bioactive effects of strontium released from surface pre-reacted glass-ionomer (S-PRG) fillers may aid in caries prevention. In this study, the local structure of strontium taken up by teeth was estimated by extended X-ray absorption fine structure analysis. Immersing teeth into S-PRG filler eluate increased the strontium content in enamel and dentin by more than 100 times. The local structure of strontium in enamel and dentin stored in distilled water was the same as that in synthetic strontium-containing hydroxyapatite (SrHAP). Moreover, the local structure of strontium in enamel and dentin after immersion in the S-PRG filler eluate was also similar to that of SrHAP. After immersion in the S-PRG filler eluate, strontium was suggested to be incorporated into the hydroxyapatite (HAP) of enamel and dentin at the calcium site in HAP.
The effects of dissolved elements from metal dental restorations are a major concern in lesions of the oral mucosa, and the evaluation of accumulated metal elements, especially their distribution and chemical state, is essential for determining the precise effects of trace metals. In this study, X-ray fluorescence with synchrotron radiation (SR-XRF) and particle-induced X-ray emission (PIXE) were applied for distribution analysis of the trace metal elements contained in the oral mucosa, and the chemical states of the elements were estimated using X-ray absorption fine structure (XAFS) analysis. Appropriate combination of these analysis techniques, particularly SR-XRF and PIXE, to visualize the distributions of the elements in the oral mucosa allowed for the observation and evaluation of accumulated metal ions and debris. Importantly, the analyses in this study could be carried out using conventional histopathological specimens without damaging the specimens. Therefore, this method would be applicable for the detection of accumulated trace metal elements in biopsy specimens from the oral mucosa.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.