SUMMARYStudies of the resurrection plant Craterostigma plantagineum have revealed some of the mechanisms which these desiccation-tolerant plants use to survive environments with extreme dehydration and restricted seasonal water. Most resurrection plants are polyploid with large genomes, which has hindered efforts to obtain whole genome sequences and perform mutational analysis. However, the application of deep sequencing technologies to transcriptomics now permits large-scale analyses of gene expression patterns despite the lack of a reference genome. Here we use pyro-sequencing to characterize the transcriptomes of C. plantagineum leaves at four stages of dehydration and rehydration. This reveals that genes involved in several pathways, such as those required for vitamin K and thiamin biosynthesis, are tightly regulated at the level of gene expression. Our analysis also provides a comprehensive picture of the array of cellular responses controlled by gene expression that allow resurrection plants to survive desiccation.
SummaryDrought is a normal and recurring climate feature in most parts of the world and plays a major role in limiting crop productivity. However, plants have their own defence systems to cope with adverse climatic conditions. One of these defence mechanisms is the reprogramming of gene expression by microRNAs (miRNAs). miRNAs are small noncoding RNAs of approximately 22 nucleotides length, which have emerged as important regulators of genes at post-transcriptional levels in a range of organisms. Some miRNAs are functionally conserved across plant species and are regulated by drought stress. These properties suggest that miRNA-based genetic modifications have the potential to enhance drought tolerance in cereal crops. This review summarizes the current understanding of the regulatory mechanisms of plant miRNAs, involvement of plant miRNAs in drought stress responses in barley (Hordeum vulgare L.), wheat (Triticum spp.) and other plant species, and the involvement of miRNAs in plant-adaptive mechanisms under drought stress. Potential strategies and directions for future miRNA research and the utilization of miRNAs in the improvement of cereal crops for drought tolerance are also discussed.
Plant growth and productivity are greatly affected by abiotic stresses such as drought, salinity, and temperature. Drought stress is one of the major limitations to crop productivity worldwide due to its multigene nature, making the production of transgenic crops a challenging prospect. To develop crop plant with enhanced tolerance of drought stress, a basic understanding of physiological, biochemical, and gene regulatory networks is essential. In the signal transduction network that leads from the perception of stress signals to the expression of stress-responsive genes, transcription factors (TFs) play an essential role. Because TFs, as opposed to most structural genes, tend to control multiple pathways steps, they have emerged as powerful tools for the manipulation of complex metabolic pathways in plants. One such class of TFs is DREB/CBF that binds to drought responsive cis-acting elements. Transgenic plants have been developed with enhanced stress tolerance by manipulating the expression of DREB/CBF. Recently the functions of an increasing number of plant TFs are being elucidated and increased understanding of these factors in controlling drought stress response has lead to practical approaches for engineering stress tolerance in plants. The utility of the various TFs in plant stress research we review is illustrated by several published examples. The manipulation of native plant regularity networks therefore represents a new era for genetically modified crops. This review focuses on the recent understanding, latest advancements related to TFs and present status of their deployment in developing stress tolerant transgenic plants.
Summary Networks of transcription factors regulate diverse physiological processes in plants to ensure that plants respond to abiotic stresses rapidly and efficiently. In this study, expression of two DREB/CBF genes, TaDREB3 and TaCBF5L, was modulated in transgenic wheat and barley, by using stress‐responsive promoters HDZI‐3 and HDZI‐4. The promoters were derived from the durum wheat genes encoding the γ‐clade TFs of the HD‐Zip class I subfamily. The activities of tested promoters were induced by drought and cold in leaves of both transgenic species. Differences in sensitivity of promoters to drought strength were dependent on drought tolerance levels of cultivars used for generation of transgenic lines. Expression of the DREB/CBF genes under both promoters improved drought and frost tolerance of transgenic barley, and frost tolerance of transgenic wheat seedlings. Expression levels of the putative TaCBF5L downstream genes in leaves of transgenic wheat seedlings were up‐regulated under severe drought, and up‐ or down‐regulated under frost, compared to those of control seedlings. The application of TaCBF5L driven by the HDZI‐4 promoter led to the significant increase of the grain yield of transgenic wheat, compared to that of the control wild‐type plants, when severe drought was applied during flowering; although no yield improvements were observed when plants grew under well‐watered conditions or moderate drought. Our findings suggest that the studied HDZI promoters combined with the DREB/CBF factors could be used in transgenic cereal plants for improvement of abiotic stress tolerance, and the reduction of negative influence of transgenes on plant development and grain yields.
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants—this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.