When it comes to agricultural sciences, one of the most difficult challenges to solve is the detection of diseases. Agricultural specialists study a variety of sources to detect plant issues on a regular basis. Rarely can misinterpretations of diseased plants cause improper pesticide selection and subsequent agricultural disaster, although this does happen from time to time. In order to diagnose illnesses at an early stage, it is necessary to deploy automated disease detection systems. This is critical for farmers since it is both time-consuming and expensive. A sick leaf must be carefully segmented in order to be properly separate it from the rest of the leaves. Despite digital noise, a different background, a different shape, and a different brightness, it is tough to distinguish a sick photo. In order to increase the quality of apple leaf images for disease detection and classification, a new approach known as brightness preserving dynamic fuzzy histogram equalisation (BPDFHE) has been created. To determine the sweetness of an apple, examine the leaf and the texture of the fruit. In the next section, the performance of the proposed enhancement algorithm is compared to the performance of existing enhancement approaches. Existing segmentation algorithms are outperformed by our approach for segmenting the area of interest from ill leaves against a live background. It is during this phase that we analyse the Jaccard index, the Dice coefficient, and correctness. Comparing the proposed segmentation algorithm to current approaches, it proves to be a highly effective strategy that can more efficiently identify apple ill leaves from a live background with a 99.8 percent accuracy rate.
When it comes to our everyday life, emotions have a critical role to play. It goes without saying that it is critical in the context of mobile-computer interaction. In social and mobile communication, it is vital to understand the influence of emotions on the way people interact with one another and with the material they access. This study tried to investigate the relationship between the expressive state of mind and the efficacy of the human-mobile interaction while accessing a variety of different sorts of material over the course of learning. In addition, the difficulty of the feeling of many individuals is taken into account in this research. Human hardness is an important factor in determining a person’s personality characteristics, and the material that they can access will alter depending on how they engage with a mobile device. It analyzes the link between the human-mobile interaction and the person’s mental toughness to provide excellent suggestion material in the appropriate manner. In this study, an explicit feedback selection method is used to gather information on the emotional state of the mind of the participants. It has also been shown that the emotional state of a person’s mind influences the human-mobile connection, with persons with varying levels of hardness accessing a variety of various sorts of material. It is hoped that this research will assist content producers in identifying engaging material that will encourage mobile users to promote good content by studying their personality features.
The substantial rise of information technology has facilitated the methods of access to digital information and internet of things (IOT). Digital image processing handles the digital material to store and distribute more effectively with decreased time and space complexity. However, these tactics undermine the privacy of digital materials. A recent study focuses on shielding digital materials from illicit use and distribution by making reversible data strategies to tackle the risk of privacy breaches for digital content. In this study, a composite reversible data hiding (CRDH) approach is suggested. CRDH employed the integer wavelet transform (HAAR transform) with the HH band’s eigenvalue decomposition. The suggested CRDH first performed the IWT transformation on the cover image (CI) and parsed it into four consecutive frequency subbands, namely, LL, HL, LH, and HH. Sensitive data of the proposed approach are incorporated by merging the HH band of the cover image’s individual values with the encrypted eigenvalues of the confidential data. The choosing of casing art is such a method that values are within a range. The confidential data picture and HH band’s frequency band are roughly the same; thus, modifying the individual values will not affect the quality of the confidential data image and the HH band’s content. The suggested strategy’s primary purpose is to design a data concealing technique that hinders the verification of digital information by maintaining a high rate of peak signal-to-noise ratio (PSNR). The PSNR of the existing technology is less than 50 per cent of the total accessible data set. The PSNR value shows the picture’s visual quality, where the PSNR increases the better image quality. Therefore, concealing data is essential for the technique that inhibits authentication and keeps a high rate of PSNR. The suggested approach fulfils this aim, gets a PSNR rate of above 50 per cent, and hits 59 per cent for line.
Remote sensing technology has penetrated all the natural resource segments as it provides precise information in an image mode. Remote sensing satellites are currently the fastest-growing source of geographic area information. With the continuous change in the earth’s surface and the wide application of remote sensing, change detection is very useful for monitoring environmental and human needs. So, it is necessary to develop automatic change detection techniques to improve the quality and reduce the time required by manual image analysis. This work focuses on the improvement of the classification accuracy of the machine learning techniques by reviewing the training samples and comparing the post-classification comparison with the image differencing in the algebraic technique. Landsat data are medium spatial resolution data; that is why pixel-wise computation has been applied. Two change detection techniques have been studied by applying a decision tree algorithm using a separability matrix and image differencing. The first change detection, e.g., the separability matrix, is a post-classification comparison in which individual images are classified by a decision tree algorithm. The second change detection is, e.g., the image differencing change detection technique in which changed and unchanged pixels are determined by applying the corner method to calculate the threshold on the changing image. The performance of the machine learning algorithm has been validated by 10-fold cross-validation. The experimental results show that the change detection using the post-classification method produced better results when compared to the image differencing of the algebraic change detection technique.
The field of image processing is distinguished by the variety of functions it offers and the wide range of applications it has in biomedical imaging. It becomes a difficult and time-consuming process for radiologists to do the manual identification and categorization of the tumour. It is a complex and time-consuming procedure conducted by radiologists or clinical professionals to remove the contaminated tumour region from magnetic resonance (MR) pictures. It is the goal of this study to improve the performance and reduce the complexity of the image segmentation process by investigating FCM predicted image segmentation procedures in order to reduce the intricacy of the process. Furthermore, relevant characteristics are collected from each segmented tissue and aligned as input to the classifiers for autonomous identification and relegation of encephalon cancers in order to increase the accuracy and quality rate of the neural network classifier. An evaluation, validation, and presentation of the experimental performance of the suggested approach have been completed. A unique APSO (accelerated particle swarm optimization) based artificial neural network model (ANNM) for the relegation of benign and malignant tumours is presented in this study effort, which allows for the automated identification and categorization of brain tumours. Using APSO training to improve the suggested ANNM model parameters would give a unique method to alleviate the stressful work of radiologists performing manual identification of encephalon cancers from MR images. The use of an APSO-based ANNM (artificial neural network model) model for automated brain tumour classification has been presented in order to demonstrate the resilience of the classification model. It has been suggested to utilise the improved enhanced fuzzy c means (IEnFCM) method for image segmentation, while the GLCM (gray level co-occurrence matrix) feature extraction approach has been employed for feature extraction from magnetic resonance imaging (MR pictures).
Breast cancer is a lethal illness that has a high mortality rate. In treatment, the accuracy of diagnosis is crucial. Machine learning and deep learning may be beneficial to doctors. The proposed backbone network is critical for the present performance of CNN-based detectors. Integrating dilated convolution, ResNet, and Alexnet increases detection performance. The composite dilated backbone network (CDBN) is an innovative method for integrating many identical backbones into a single robust backbone. Hence, CDBN uses the lead backbone feature maps to identify objects. It feeds high-level output features from previous backbones into the next backbone in a stepwise way. We show that most contemporary detectors can easily include CDBN to improve performance achieved mAP improvements ranging from 1.5 to 3.0 percent on the breast cancer histopathological image classification (BreakHis) dataset. Experiments have also shown that instance segmentation may be improved. In the BreakHis dataset, CDBN enhances the baseline detector cascade mask R-CNN (mAP = 53.3). The proposed CDBN detector does not need pretraining. It creates high-level traits by combining low-level elements. This network is made up of several identical backbones that are linked together. The composite dilated backbone considers the linked backbones CDBN.
An accurate identification of objects from the acquisition system depends on the clear segmentation and classification of remote sensing images. With the limited financial resources and the high intra-class variations, the earlier proposed algorithms failed to handle the sub-optimal dataset. The building of an efficient training set iteratively in active learning (AL) approaches improves classification performance. The heuristics-based AL provides better results with the inheritance of contextual information and the robustness to noise variations. The uncertainty exists pixel variations make the heuristics-based AL fail to handle the remote sensing image classification. Previously, we focused on the extraction of clear textural pattern information by using the extended differential pattern-based relevance vector machine (EDP-AL). This paper extends that work into the novel pixel-certainty activity learning (PCAL) based on the information about textural patterns obtained from the extended differential pattern (EDP). Initially, distributed intensity filtering (DIF) is used to eliminate noise from the image, and then histogram equalization (HE) is used to improve the image quality. The EDP is used to merge and classify different labels for each image sample, and this algorithm expresses the textural information. The PCAL technique is used to classify the HSI patterns that are important in remote sensing applications using this pattern collection. Pavia University and Indian Pines (IP) are the datasets used to validate the performance of the proposed PCAL (PU). The ability of PCAL to accurately categorize land cover types is demonstrated by a comparison of the proposed PCAL with existing algorithms in terms of classification accuracy and the Kappa coefficient.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers