The Indonesian language is an agglutinative language which has complex suffixes and affixes attached on its root.
One of the strategic plans of the developing universities in obtaining new students is forming a partnership with surrounding high schools. However, partnerships made does not always behave as expected. This paper presented the segmentation technique to the previous new student admission dataset using the integration of recency, frequency, and monetary (RFM) analysis and fuzzy c-means (FCM) algorithm to evaluate the loyalty of the entire school that has bound the partnership with the institution. The dataset is converted using the RFM approach before processed with the FCM algorithm. The result reveals that the schools can be segmented, respectively, as high potential (SP), potential (P), low potential (CP), and very low potential (KP) categories with PCI value 0.86. From the analysis of SP, P, and CP, only 71 % of 52 school partners categorized as loyal partners.
Pengeringan secara konvensional masih banyak kekurangan, salah satunya sangat tergantung dengan cuaca. Sehingga perlu dilakukan suatu penanganan alternatif yaitu dengan menggunakan alat pengering mekanis menggunakan tambahan panas dan memerlukan energi untuk memanaskan bahan dan menguapkam air yaitu dengan menggunkan alat pengering seperti alat pengering tipe rak. Penelitian ini fokus pada penentuan konstanta laju pengeringan manisan pepaya baik hasil eksperimen ataupun prediksi menggunakan pengering tipe rak yang diberikan blower. Variabel yang digunakan adalah kecepatan aliran udara blower 3.43 m/detik dan 4.55 m/detik. Diperoleh hasil bahwa konstanta laju pengeringan prediksi memiliki nilai determinansi mencapai lebih dari 90% dengan nilai RMSE sangat kecil, masing-masing 0.065 dan 0.125. Penggunaan kecepatan aliran udara tidak terlalu mempengaruhi nilai konstanta laju pengeringan.
<p class="Abstrak">Suku Sasak, yang tinggal di pulau Lombok Nusa Tenggara Barat, memiliki tradisi penulisan di daun lontar (<em>Borassus </em><em>Flabellifer</em>) kering, salah satunya adalah naskah Lontar Babad Lombok. Naskah Lontar Babad Lombok seiring berlalunya waktu, menjadi rapuh dan mudah patah sehingga memerlukan perawatan. Keadaan ini mendorongnya perlu dilakukan digitalisasi naskah lontar babad lombok sebagai bentuk pelestarian sehingga para generasi Milenial, khususnya di Lombok, dapat menikmati lontar babad lombok. Digitalisasi citra tersebut tantangan utama adalah tepi kabur teks dan perbedaan minimum antara teks dan bagian non-tekssebagai akibat dari proses perawatan. Oleh karena itu, dibutuhkan proses peningkatan kualitas citra hasil digitalisasi agar tulisan dapat lebih jelas terbaca. Salah satu metode yang terbukti mampu untuk memisahkan teks dari latar belakang yang sangat berkorelasi adalah <em>Natural Gradient Flexibel</em> (NGF) berbasiskan <em>Independent Component Analysis</em> (ICA), NGF-ICA. Penelitian ini bertujuan untuk melakukan peningkatan kualitas citra digitalisasi sebelum diumpankan pada database dan sistem informasi yang telah dibangun. Kualitas citra yang telah ditingkatkan diukur menggunakan metode MSE dan PSNR untuk tingkat kemiripannya, dan metode Entropi dan SSIM untuk informasi dan perspektif visual. Hasil penelitian menunjukkan bahwa penerapan algoritma NGF-ICA dapat memberikan citra keluaran dengan kualitas yang tinggi dengan nilai rata-rata MSE, PSNR, SSIM dan peningkatan Entropi sebesar 708, 19.95 db, 0.87 dan 0.45, secara berturut-turut.</p><p class="Abstrak"> </p><p><strong><em>Abstract</em></strong></p><p class="Abstract">Sasak tribe, who lives on Lombok Island, West Nusa Tenggara, has been writing manuscripts on dry palm leaves (Borassus Flabellifer) as a tradition, one of the manuscripts is Lontar Babad Lombok. As time pass by, the manuscript becomes brittle and breaks easily, therefore maintenances are required. this situation force the need to digitalize the manuscript as an act of preservation, hence the millennial generation, especially on Lombok Island, can enjoy the manuscript. the main challenge is the blurry edge of the text and the slight difference between the text and non-text part caused by the treatment process. Hence, it is needed to enhance the quality of the digitalize image to make the manuscript can be more clearly read. One of the proven methods that able to separate text from highly correlated backgrounds is Natural Gradient Flexibel (NGF) based on Independent Component Analysis (ICA), NGF-ICA. The aim of this study is to improve the quality of the digitized images before they fed into the database and information system that has been built. The enhanced image quality was measured, MSE and PSNR methods were used to measure the similarity level, and the Entropy and SSIM method were used to measure the information and visual perspective. The results show that the application of the NGF-ICA algorithm can generate high-quality output images with average values of MSE, PSNR, SSIM, and increasing Entropy by 708, 19.95 dB, 0.87, and 0.45, respectively.</p><p><strong><em><br /></em></strong></p>
Voice is the sound emitted from living things. With the development of Automatic Speech Recognition (ASR) technology, voice can be used to make it easier for humans to do something. In the ASR extraction process the features have an important role in the recognition process. The feature extraction methods that are commonly applied to ASR are MFCC and Wavelet. Each of them has advantages and disadvantages. Therefore, this study will combine the wavelet feature extraction method and MFCC to maximize the existing advantages. The proposed method is called Wavelet-MFCC. Voice recognition method that does not use recommendations. Determination of system performance using the Word Recoginition Rate (WRR) method which is validated with the K-Fold Cross Validation with the number of folds is 5. The research dataset used is voice recording digits 0-9 in English. The results show that the digit speech recognition system that has been built gives the highest average value of 63% for digit 4 using wavelet daubechies DB3 and wavelet dyadic transform method. As for the comparison results of the wavelet decomposition method used, that the use of dyadic wavelet transformation is better than the wavelet package.
<p class="Abstrak">Penelitian pengolahan sinyal digital yang berfokus pada pengenalan pembicara telah dimulai sejak beberapa dekade yang lalu, dan telah menghasilkan banyak metode-metode pengenalan pembicara. Di antara algoritma pembentukan koefisien ciri yang telah dikembangkan tersebut, ada dua algoritma yang dapat memberikan akurasi yang tinggi jika diterapkan pada sistem, yaitu <em>Mel Frequency Cepstral Coefficient</em> (MFCC) dan <em>Wavelet</em>. Penelitian ini bertujuan untuk menguji dan memilih kanal terbaik dari proses <em>wavelet</em>-MFCC yang dapat dijadikan sebagai koefisien ciri baru untuk diterapkan pada sistem pengenal pembicara. Koefisien ciri baru tersebut kemudian disebut dengan koefisien ciri <em>Wavelet</em>-MFCC. Kofisien ini dibentuk dari merubah kanal hasil dekomposisi <em>wavelet</em>, yaitu kanal aproksimasi (cA), kanal detail (cD), dan penggabungannya (cAcD), menjadi koefisien MFCC. Metode dekomposisi <em>wavelet</em> yang digunakan adalah metode <em>dyadic</em> dengan menerapkan <em>level</em> dekomposisi <em>level</em> 1 dan <em>level</em> 2. Setiap koefisien ciri kemudian menjadi inputan pada sistem pengklasifikasi <em>Hidden Markov Models</em> (HMM). Keluaran dari HMM kemudian dihitung akurasinya dan dianalisis. Dari pengujian yang dilakukan, diperoleh bahwa kanal detail (cD) sebagai ciri dapat memberikan akurasi yang sama dengan menggunakan kanal gabungan (cAcD) dan lebih tinggi dari kanal aproksimasi (cA), dengan akurasi sebesar 95%. Hal ini menunjukkan bahwa, kanal detail pada dekomposisi <em>level</em> 1 menyimpan ciri suara dari setiap pembicara sehingga sudah cukup untuk dijadikan sebagai koefisien ciri. Maka, penggunaan dekomposisi <em>level</em> 1 dan kanal detail cD sebagai ciri <em>Wavelet</em>-<em>MFCC</em> pada sistem pengenalan pembicara dapat meringankan dan mempercepat proses komputasi.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Research in digital signal that focused on speaker recognition has begun since decades ago, and has resulted many speaker recognition methods. there are two algorithms that can provide high accuracy in recognition system, which are Mel Frequency Cepstral Coefficient (MFCC) and Wavelet. the aims of this study is to examine and chose the best channel from wavelet-MFCC process that can be used as new feature coefficient, then called as Wavelet-MFCC features coefficient. The coefficient is built by converting the wavelet decomposition channels, which are approximation (cA), detail (cD), and its combination (cAcD), into the MFCC coefficient. Wavelet dyadic decomposition with level 1 and level 2 of decomposition is applied. Each feature coefficient acts as an input to the HMM classifier. The accuracy of the HMM output is calculated, then analyzed. The obtained results show that the detail chanel (cD) achieve equal accuracy as the combination chanel (cAcD), and higher accuracy compared to aproximation channel (cA), with accuracy 95%. Thus, it can be conclude that the detail channel on level 1 decomposition contains features of each speaker's. Then, cD is enough to be used as a Wavelet-MFCC feature. Thus, its implementation in the SRS can ease and speed up the computing process.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers