BackgroundDisturbance to human microbiota may underlie several pathologies. Yet, we lack a comprehensive understanding of how lifestyle affects the dynamics of human-associated microbial communities.ResultsHere, we link over 10,000 longitudinal measurements of human wellness and action to the daily gut and salivary microbiota dynamics of two individuals over the course of one year. These time series show overall microbial communities to be stable for months. However, rare events in each subjects’ life rapidly and broadly impacted microbiota dynamics. Travel from the developed to the developing world in one subject led to a nearly two-fold increase in the Bacteroidetes to Firmicutes ratio, which reversed upon return. Enteric infection in the other subject resulted in the permanent decline of most gut bacterial taxa, which were replaced by genetically similar species. Still, even during periods of overall community stability, the dynamics of select microbial taxa could be associated with specific host behaviors. Most prominently, changes in host fiber intake positively correlated with next-day abundance changes among 15% of gut microbiota members.ConclusionsOur findings suggest that although human-associated microbial communities are generally stable, they can be quickly and profoundly altered by common human actions and experiences.Electronic supplementary materialThe online version of this article (doi:10.1186/gb-2014-15-7-r89) contains supplementary material, which is available to authorized users.
Neoplastic cells recruit fibroblasts through various growth factors and cytokines. These “cancer-associated fibroblasts” (CAF) actively interact with neoplastic cells and form a myofibroblastic microenvironment that promotes cancer growth and survival and supports malignancy. Several products of their paracrine signaling repertoire have been recognized as tumor growth and metastasis regulators. However, tumor-promoting cell signaling is not the only reason that makes CAFs key components of the “tumor microenvironment,” as CAFs affect both the architecture and growth mechanics of the developing tumor. CAFs participate in the remodeling of peritumoral stroma, which is a prerequisite of neoplastic cell invasion, expansion, and metastasis. CAFs are not present peritumorally as individual cells but they act orchestrated to fully deploy a desmoplastic program, characterized by “syncytial” (or collective) configuration and altered cell adhesion properties. Such myofibroblastic cohorts are reminiscent of those encountered in wound-healing processes. The view of “cancer as a wound that does not heal” led to useful comparisons between wound healing and tumorigenesis and expanded our knowledge of the role of CAF cohorts in cancer. In this integrative model of cancer invasion and metastasis, we propose that the CAF-supported microenvironment has a dual tumor-promoting role. Not only does it provide essential signals for cancer cell dedifferentiation, proliferation, and survival but it also facilitates cancer cell local invasion and metastatic phenomena.
Inflammatory bowel diseases, including ulcerative colitis and Crohn's disease, increase the risk of colorectal cancer in humans. It has been recently shown in humans and animal models that intestinal microbiota and host immunity are integral in the progression of large bowel diseases. Lymphocytes are widely believed to prevent bacterially induced inflammation in the bowel, and lymphocytes are also critical in protecting against primary tumors of intestinal epithelia in mice. Taken together, this raises the possibility that lymphocytes may inhibit colon carcinogenesis by reducing bacterially driven inflammation. To examine the role of bacteria, lymphocytes, and inflammatory bowel disease in the development of colon cancer, 129/SvEv Rag-2-deficient and congenic wild-type mice were orally inoculated with a widespread enteric mouse bacterial pathogen, Helicobacter hepaticus, or sham-dosed with media only. H. hepaticus-infected Rag2-/-, but not sham-dosed Rag2-/- mice, rapidly developed colitis and large bowel carcinoma. This demonstrated a link between microbially driven inflammation and cancer in the lower bowel and suggested that innate immune dysregulation may have an important role in inflammatory bowel disease and progression to cancer. H. hepaticus-infected wild-type mice did not develop inflammation or carcinoma showing that lymphocytes were required to prevent bacterially induced cancer at this site. Adoptive transfer with CD4+ CD45RBlo CD25+ regulatory T cells into Rag-deficient hosts significantly inhibited H. hepaticus-induced inflammation and development of cancer. These results suggested that the ability of CD4+ T cells to protect against intestinal cancer was correlated with their ability to reduce bacterially induced inflammatory bowel disease. Further, regulatory T cells may act directly on the innate immune system to reduce or prevent disease. These roles for T cells in protection against colon carcinoma may have implications for new modes of prevention and treatment of cancer in humans.
It is generally agreed that most colon cancers develop from adenomatous polyps, and it is this fact on which screening strategies are based. Although there is overwhelming evidence to link intrinsic genetic lesions with the formation of these preneoplastic lesions, recent data suggest that the tumor stromal environment also plays an essential role in this disease. In particular, it has been suggested that CD34 ؉ immature myeloid precursor cells are required for tumor development and invasion. Here we have used mice conditional for the stabilization of -catenin or defective for the adenomatous polyposis coli (APC) gene to reinvestigated the identity and importance of tumor-infiltrating hematopoietic cells in polyposis. We show that, from the onset, polyps are infiltrated with proinflammatory mast cells (MC) and their precursors. Depletion of MC either pharmacologically or through the generation of chimeric mice with genetic lesions in MC development leads to a profound remission of existing polyps. Our data suggest that MC are an essential hematopoietic component for preneoplastic polyp development and are a novel target for therapeutic intervention.cancer ͉ inflammation ͉ polyposis ͉ TNF␣
Developed societies, although having successfully reduced the burden of infectious disease, constitute an environment where metabolic, cardiovascular, and autoimmune diseases thrive. Living in westernized countries has not fundamentally changed the genetic basis on which these diseases emerge, but has strong impact on lifestyle and pathogen exposure. In particular, nutritional patterns collectively termed the “Western diet”, including high-fat and cholesterol, high-protein, high-sugar, and excess salt intake, as well as frequent consumption of processed and ‘fast foods’, promote obesity, metabolic syndrome, and cardiovascular disease. These factors have also gained high interest as possible promoters of autoimmune diseases. Underlying metabolic and immunologic mechanisms are currently being intensively explored. This review discusses the current knowledge relative to the association of “Western diet” with autoimmunity, and highlights the role of T cells as central players linking dietary influences to autoimmune pathology.
The retinoblastoma protein (pRB) plays a key role in the control of normal development and proliferation through the regulation of the E2F transcription factors. We generated a mutant mouse model to assess the in vivo role of the predominant E2F family member, E2F4. Remarkably, loss of E2F4 had no detectable effect on either cell cycle arrest or proliferation. However, E2F4 was essential for normal development. E2f4-/- mice died of an increased susceptibility to opportunistic infections that appeared to result from craniofacial defects. They also displayed a variety of erythroid abnormalities that arose from a cell autonomous defect in late stage maturation. This suggests that E2F4 makes a major contribution to the control of erythrocyte development by the pRB tumor suppressor.
Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.
Inflammation associated with bacterial infections is a risk factor for cancers in humans, yet its role in breast cancer remains poorly understood. We have previously shown that innate immune inflammatory response against intestinal bacteria is sufficient to induce colon cancer. Here we report that infecting Rag2-deficient C57BL/6 Apc Min/+ mice with an intestinal bacterial pathogen, Helicobacter hepaticus, significantly promotes mammary carcinoma in females and enhances intestinal adenoma multiplicity by a tumor necrosis factor A (TNFA)-dependent mechanism. The mammary and intestinal tumor development as well as the increase in proinflammatory mediators is suppressed by adoptive transfer of interleukin 10-competent CD4 + CD45RB lo CD25 + regulatory (T R ) cells. Furthermore, prior exposure of donor mice to H. hepaticus significantly enhances antitumor potency of their T R cells. Interestingly, these microbially experienced T R cells suppress tumorigenesis more effectively in recipient mice irrespective of their tumor etiology. These data suggest that infections with enteric pathogens enhance T R -cell potency and protect against epithelial cancers later in life, potentially explaining paradoxical increases in cancer risk in developed countries having more stringent hygiene practices. The possibility that dysregulated gut microbial infections in humans may lead to cancer in anatomically distant organs, such as breast, highlights the need for novel immune-based strategies in cancer prevention and treatment. (Cancer Res 2006; 66(15): 7395-400)
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers