Pneumonia is an infection in one or both the lungs because of virus or bacteria through breathing air. It inflames air sacs in lungs which fill with fluid which further leads to problems in respiration. Pneumonia is interpreted by radiologists by observing abnormality in lungs in case of fluid in Chest X-Rays. Computer Aided Detection Diagnosis (CAD) tools can assist radiologists by improving their diagnostic accuracy. Such CAD tools use neural networks which are trained on Chest X-Ray dataset to classify a Chest X-Ray into normal or infected with Pneumonia. Convolution neural networks have shown remarkable performance in object detection in an image. Quaternion Convolution neural network (QCNN) is a generalization of conventional convolution neural networks. QCNN treats all three channels (R, G, B) of color image as a single unit and it extracts better representative features and which further improves classification. In this paper, we have trained Quaternion residual network on a publicly available large Chest X-Ray dataset on Kaggle repository and obtained classification accuracy of 93.75% and F-score of .94. We have also compared our performance with other CNN architectures. We found that classification accuracy was higher with Quaternion Residual network when we compared it with a real valued Residual network.
The target detection ability of an infrared small target detection (ISTD) system is advantageous in many applications. The highly varied nature of the background image and small target characteristics make the detection process extremely difficult. To address this issue, this study proposes an infrared patch model system using non-convex (IPNCWNNM) weighted nuclear norm minimization (WNNM) and robust principal component analysis (RPCA). As observed in the most advanced methods of infrared patch images (IPI), the edges, sometimes in a crowded background, can be detected as targets due to the extreme shrinking of singular values (SV). Therefore, a non-convex WNNM and RPCA have been utilized in this paper, where varying weights are assigned to the SV rather than the same weights for all SV in the existing nuclear norm minimization (NNM) of IPI-based methods. The alternate direction method of multiplier (ADMM) is also employed in the mathematical evaluation of the proposed work. The observed evaluations demonstrated that in terms of background suppression and target detection proficiency, the suggested technique performed better than the cited baseline methods.
Introduction: Sign language is the only way to communicate for speech-impaired people. But this sign language is not known to normal people so this is the cause of barrier in communicating. This is the problem faced by speech impaired people. In this paper, we have presented our solution which captured hand gestures with Kinect camera and classified the hand gesture into its correct symbol. Method: We used Kinect camera not the ordinary web camera because the ordinary camera does not capture its 3d orientation or depth of an image from camera however Kinect camera can capture 3d image and this will make classification more accurate. Result: Kinect camera will produce a different image for hand gestures for ‘2’ and ‘V’ and similarly for ‘1’ and ‘I’ however, normal web camera will not be able to distinguish between these two. We used hand gesture for Indian sign language and our dataset had 46339, RGB images and 46339 depth images. 80% of the total images were used for training and the remaining 20% for testing. In total 36 hand gestures were considered to capture alphabets and alphabets from A-Z and 10 for numeric, 26 for digits from 0-9 were considered to capture alphabets and Keywords. Conclusion: Along with real-time implementation, we have also shown the comparison of the performance of the various machine learning models in which we have found out the accuracy of CNN on depth- images has given the most accurate performance than other models. All these resulted were obtained on PYNQ Z2 board.
In computer vision, object recognition and image categorization have proven to be difficult challenges. They have, nevertheless, generated responses to a wide range of difficult issues from a variety of fields. Convolution Neural Networks (CNNs) have recently been identified as the most widely proposed deep learning (DL) algorithms in the literature. CNNs have unquestionably delivered cutting-edge achievements, particularly in the areas of image classification, speech recognition, and video processing. However, it has been noticed that the CNN-training assignment demands a large amount of data, which is in low supply, especially in the medical industry, and as a result, the training process takes longer. In this paper, we describe an attentionaware CNN architecture for classifying chest X-ray images to diagnose Pneumonia in order to address the aforementioned difficulties. Attention Modules provide attention-aware properties to the Attention Network. The attentionaware features of various modules alter as the layers become deeper. Using a bottom-up top-down feedforward structure, the feedforward and feedback attention processes are integrated into a single feedforward process inside each attention module. In the present work, a deep neural network (DNN) is combined with an attention mechanism to test the prediction of Pneumonia disease using chest X-ray pictures. To produce attention-aware features, the suggested network was built by merging channel and spatial attention modules in DNN architecture. With this network, we worked on a publicly available Kaggle chest X-ray dataset. Extensive testing was carried out to validate the suggested model. In the experimental results, we attained an accuracy of 95.47% and an F-score of 0.92, indicating that the suggested model outperformed against the baseline models.
Worldwide, pneumonia is the leading cause of infant mortality. Experienced radiologists use chest X-rays to diagnose pneumonia and other respiratory diseases. The diagnostic procedure's complexity causes radiologists to disagree with the decision. Early diagnosis is the only feasible strategy for mitigating the disease's impact on the patent. Computer-aided diagnostics improve the accuracy of diagnosis. Recent studies established that Quaternion neural networks classify and predict better than real-valued neural networks, especially when dealing with multi-dimensional or multi-channel input. The attention mechanism has been derived from the human brain's visual and cognitive ability in which it focuses on some portion of the image and ignores the rest portion of the image. The attention mechanism maximizes the usage of the image's relevant aspects, hence boosting classification accuracy. In the current work, we propose a QCSA network (Quaternion Channel-Spatial Attention Network) by combining the spatial and channel attention mechanism with Quaternion residual network to classify chest X-Ray images for Pneumonia detection. We used a Kaggle X-ray dataset. The suggested architecture achieved 94.53% accuracy and 0.89 AUC. We have also shown that performance improves by integrating the attention mechanism in QCNN. Our results indicate that our approach to detecting pneumonia is promising.
Currently, breast cancer has been a major cause of deaths in women worldwide and the World Health Organization (WHO) has confirmed this. The severity of this disease can be minimized to the large extend, if it is diagnosed properly at an early stage of the disease. Therefore, the proper treatment of a patient having cancer can be processed in better way, if it can be diagnosed properly as early as possible using the better algorithms. Moreover, it has been currently observed that the deep neural networks have delivered remarkable performance for detecting cancer in histopathological images of breast tissues. To address the above said issues, this paper presents a hybrid model using the transfer learning to study the histopathological images, which help in detection and rectification of the disease at a low cost. Extensive dataset experiments were carried out to validate the suggested hybrid model in this paper. The experimental results show that the proposed model outperformed the baseline methods, with F-scores of 0.81 for DenseNet + Logistic Regression hybrid model, (F-score: 0.73) for Visual Geometry Group (VGG) + Logistic Regression hybrid model, (F-score: 0.74) for VGG + Random Forest, (F-score: 0.79) for DenseNet + Random Forest, and (F-score: 0.79) for VGG + Densenet + Logistic Regression hybrid model on the dataset of histopathological images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.