Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (s n mB m ), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of s n mB m co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 s cm − 1 obtained at 165 °C.
Forward osmosis (FO) has been increasingly studied in the past decade for its potential as an emerging low-energy water and wastewater treatment process. However, the term "low-energy" may only be suitable for those applications in where no further treatment of the draw solution (DS) is required either in the form of pretreatment or post-treatment to the FO process (e.g. where the diluted DS is the targeted final product which can be used directly or simply discarded). In most applications, FO has to be coupled with another separation process in a so-called hybrid FO system to either separate the DS from the final product water or to be used as an advanced pre-treatment process to conventional desalination technologies. The additional process increases the capital cost as well as the energy demand of the overall system which is one of the several challenges that hybrid FO systems need to overcome to compete with other separation technologies. Yet, there are some applications where hybrid FO systems can outperform conventional processes and this study aims to provide a comprehensive review on the current state of hybrid FO systems. The recent development and performance of hybrid FO systems in different applications have been reported. This review also highlights the future research directions for the current hybrid FO systems to achieve successful implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.