The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. LPWANs (Low Power Wide Area Networks) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 kilometers. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects.
HTTP Adaptive Streaming (HAS) is quickly becoming the de facto standard for video streaming services. In HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics, deployed at the video player, allow the most appropriate level to be dynamically requested, based on the current network conditions. It has been shown that today's heuristics underperform when multiple clients consume video at the same time, due to fairness issues among clients. Concretely, this means that different clients negatively influence each other as they compete for shared network resources. In this article, we propose a novel rate adaptation algorithm called FINEAS (Fair In-Network Enhanced Adaptive Streaming), capable of increasing clients' Quality of Experience (QoE) and achieving fairness in a multiclient setting. A key element of this approach is an in-network system of coordination proxies in charge of facilitating fair resource sharing among clients. The strength of this approach is threefold. First, fairness is achieved without explicit communication among clients and thus no significant overhead is introduced into the network. Second, the system of coordination proxies is transparent to the clients, that is, the clients do not need to be aware of its presence. Third, the HAS principle is maintained, as the in-network components only provide the clients with new information and suggestions, while the rate adaptation decision remains the sole responsibility of the clients themselves. We evaluate this novel approach through simulations, under highly variable bandwidth conditions and in several multiclient scenarios. We show how the proposed approach can improve fairness up to 80% compared to state-of-the-art HAS heuristics in a scenario with three networks, each containing 30 clients streaming video at the same time. Latré, Middelheimlaan 1, B-2020 Antwerp, Belgium; emails: {jeroen.famaey, steven.latre}@uantwerpen.be. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Abstract-Network virtualisation is considerably gaining attention as a solution to ossification of the Internet. However, the success of network virtualisation will depend in part on how efficiently the virtual networks utilise substrate network resources. In this paper, we propose a machine learning-based approach to virtual network resource management. We propose to model the substrate network as a decentralised system and introduce a learning algorithm in each substrate node and substrate link, providing self-organization capabilities. We propose a multiagent learning algorithm that carries out the substrate network resource management in a coordinated and decentralised way. The task of these agents is to use evaluative feedback to learn an optimal policy so as to dynamically allocate network resources to virtual nodes and links. The agents ensure that while the virtual networks have the resources they need at any given time, only the required resources are reserved for this purpose. Simulations show that our dynamic approach significantly improves the virtual network acceptance ratio and the maximum number of accepted virtual network requests at any time while ensuring that virtual network quality of service requirements such as packet drop rate and virtual link delay are not affected.
Abstract-HTTP Adaptive Streaming (HAS) is becoming the de facto standard for Over-The-Top (OTT)-based video streaming services such as YouTube and Netflix. By splitting a video into multiple segments of a couple of seconds and encoding each of these at multiple quality levels, HAS allows a video client to dynamically adapt the requested quality during the playout to react to network changes. However, state-of-the-art quality selection heuristics are deterministic and tailored to specific network configurations. Therefore, they are unable to cope with a vast range of highly dynamic network settings. In this letter, a novel Reinforcement Learning (RL)-based HAS client is presented and evaluated. The self-learning HAS client dynamically adapts its behaviour by interacting with the environment to optimize the Quality of Experience (QoE), the quality as perceived by the enduser. The proposed client has been thoroughly evaluated using a network-based simulator and is shown to outperform traditional HAS clients by up to 13% in a mobile network environment.
In recent years, HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for adaptive video streaming services. A HAS video consists of multiple segments, encoded at multiple quality levels. State-of-the-art HAS clients employ deterministic heuristics to dynamically adapt the requested quality level based on the perceived network conditions. Current HAS client heuristics are however hardwired to fit specific network configurations, making them less flexible to fit a vast range of settings. In this article, a (Frequency Adjusted)Q-Learning HAS client is proposed. In contrast to existing heuristics, the proposed HAS client dynamically learns the optimal behaviour corresponding to the current network environment in order to optimize the Quality of Experience (QoE). Furthermore, the client has been optimized both in terms of global performance and convergence speed. Thorough evaluations show that the proposed client can outperform deterministic algorithms by 11% to 18% in terms of Mean Opinion Score (MOS) in a wide range of network configurations.
6TiSCH is a working group at the IETF, which is standardizing how to combine IEEE802.15.4 time‐slotted channel hopping (TSCH) with IPv6. The result is a solution that offers both industrial performance and seamless integration into the Internet and is therefore seen as a key technology for the Industrial Internet of Things. This article presents the 6TiSCH simulator, created as part of the standardization activity, and which has been used extensively by the working group. The goal of the simulator is to benchmark 6TiSCH against realistic scenarios, something which is hard to do using formal models or real‐world deployments. This article discusses the overall architecture of the simulator, details the different models it uses (ie, energy and propagation), compares it to other simulation/emulation platforms, and presents five published examples of how the 6TiSCH simulator has been used.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers