The medical literature describes numerous in vitro and in vivo wound-healing models. The selection of an animal model depends on a number of factors including availability, cost, ease of handling, investigator familiarity, and anatomical/functional similarity to humans. Small mammals are frequently used for wound healing studies, however, these mammals differ from humans in a number of anatomical and physiological ways. Anatomically and physiologically, pig skin is more similar to human skin. The many similarities between man and pig would lead one to believe that the pig should make an excellent animal model for human wound healing. The purpose of this paper is to review the existing literature for evidence of this supposition and determine how well the various models correlate to human wound healing. Studies of wound dressings, topical antimicrobials, and growth factors are examined. Over 180 articles were utilized for this comparative review. Our conclusion is that the porcine model is an excellent tool for the evaluation of therapeutic agents destined for use in human wounds.
T2K (Tokai to Kamioka) is a long baseline neutrino experiment with the primary goal of measuring the neutrino mixing angle θ 13 . It uses a muon neutrino beam, produced at the J-PARC accelerator facility in Tokai, sent through a near detector complex on its way to the far detector, Super-Kamiokande. Appearance of electron neutrinos at the far detector due to oscillation is used to measure the value of θ 13 .
The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13θ13 by observing νeνe appearance in a νμνμ beam. It also aims to make a precision measurement of the known oscillation parameters, View the MathML sourceΔm232 and sin22θ23sin22θ23, via νμνμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem
We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: normal hierarchy∶ sin 2 θ 23 ¼ 0.514 þ0.055 −0.056 and Δm 2 32 ¼ ð2.51 AE 0.10Þ × 10 −3 eV 2 =c 4 and inverted hierarchy∶ sin 2 θ 23 ¼ 0.511 AE 0.055 and Δm 2 13 ¼ ð2.48 AE 0.10Þ × 10 −3 eV 2 =c 4 . The analysis accounts for multinucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters, jΔm 2 j, sin 2 θ 23 , sin 2 θ 13 , δ CP , and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region δ CP ¼ ½0.15; 0.83 π for normal hierarchy and δ CP ¼ ½−0.08; 1.09 π for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes factor of 2.2. The most probable values and 68% one-dimensional credible intervals for the other oscillation parameters, when reactor data are included, are sin 2 θ 23 ¼ 0.528 þ0.055 −0.038 and jΔm 2 32 j ¼ ð2.51 AE 0.11Þ × 10 −3 eV 2 =c 4 .
Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in increased morbidity and mortality. We utilized a well-established porcine partial thickness wound healing model to study the synergistic effects of USA300 and P. aeruginosa on wound healing. Wound re-epithelialization was significantly delayed by mixed-species biofilms through suppression of keratinocyte growth factor 1. Pseudomonas showed an inhibitory effect on USA300 growth in vitro while both species co-existed in cutaneous wounds in vivo. Polymicrobial wound infection in the presence of P. aeruginosa resulted in induced expression of USA300 virulence factors Panton-Valentine leukocidin and α-hemolysin. These results provide evidence for the interaction of bacterial species within mixed-species biofilms in vivo and for the first time, the contribution of virulence factors to the severity of polymicrobial wound infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.