Linear stability analysis is applied to a swirl-stabilized combustor flow with the aim to understand how the flame shape and associated density field affects the manifestation of self-excited flow instabilities. In isothermal swirling jets, self-excited flow oscillations typically manifest in a precessing vortex core and synchronized growth of large-scale spiral-shaped vortical structures. Recent theoretical studies relate these dynamics to a hydrodynamic global instability. These global modes also emerge in reacting flows, thereby crucially affecting the mixing characteristics and the flame dynamics. It is, however, observed that these self-excited flow oscillations are often suppressed in the reacting flow, while they are clearly present at isothermal conditions. This study provides strong evidence that the suppression of the precessing vortex core is caused by density inhomogeneities created by the flame. This mechanism is revealed by considering two reacting flow configurations: The first configuration represents a perfectly premixed steam-diluted detached flame featuring a strong precessing vortex core. The second represents a perfectly premixed dry flame anchoring near the combustor inlet, which does not exhibit self-excited oscillations. Experiments are conducted in a generic combustor test rig and the flow dynamics are captured using PIV and LDA. The corresponding density fields are approximated from the seeding density using a quantitative light sheet technique. The experimental results are compared to the global instability properties derived from hydrodynamic linear stability theory. Excellent agreement between the theoretically derived global mode frequency and measured precession frequency provide sufficient evidence to conclude that the self-excited oscillations are, indeed, driven by a global hydrodynamic instability. The effect of the density field on the global instability is studied explicitly by performing the analysis with and without density stratification. It turns out that the significant change in instability is caused by the radial density gradients in the inner recirculation zone and not by the change of the mean velocity field. The present work provides a theoretical framework to analyze the global hydrodynamic instability of realistic combustion configurations. It allows for relating the flame position and the resulting density field to the emergence of a precessing vortex core.
Humidified gas turbines and steam-injected gas turbines are promising technologies to lower the emissions and increase the efficiency and fuel flexibility of gas turbines. In the current study, the influence of steam-dilution on swirl-stabilized methane and hydrogenfired flames is experimentally investigated at Reynolds numbers in the range of 22,000 to 32,000. Velocity fields and flame positions were measured using high-speed particle image velocimetry and OH * chemiluminescence. An extension of the quantitative light sheet technique was employed to estimate the temperature fields. The combined results reveal strong changes in the flame position, the velocity field, and the temperature field with increasing rates of steam dilution. In particular, three different flow and flame patterns are encountered: At dry conditions, a V-shaped flame stabilizes in a broad inner recirculation zone with low local turbulent kinetic energy; at moderate steam content, the flame changes into a trumpet-like shape; and at very high rates of steam-dilution, the flame detaches and shows an annular shape. The associated coherent flow structures are extracted from the particle image velocimetry data employing proper orthogonal decomposition. The isothermal flow is dominated by a helical instability arising near the combustor inlet. This structure is completely suppressed for the dry flame and reappears for the heavily steam-diluted detached flame with a similar shape and frequency as for the isothermal case. The flow field of the trumpet-like flame at intermediate to high steam dilution rates features a helical instability of lower frequency that is located further downstream than in the isothermal and very wet case. A conceptional explanation is presented that relates the suppression of the helical instability to the specific encountered temperature fields and flame shapes.
Since lean premixed combustion allows for fuel-efficiency and low emissions, it is nowadays state of the art in stationary gas turbines. In the long term, it is also a promising approach for aero engines, when safety issues like lean blowout (LBO) and flame flashback in the premixer can be overcome. While for the use of hydrogen the LBO limits are extended, the flashback propensity is increased. Thus, axial air injection is applied in order to eliminate flashback in a swirl-stabilized combustor burning premixed hydrogen. Axial injection constitutes a nonswirling jet on the central axis of the radial swirl generator which influences the vortex breakdown (VB) position. In the present work, changes in the flow field and their impact on flashback limits of a model combustor are evaluated. First, a parametric study is conducted under isothermal test conditions in a water tunnel employing particle image velocimetry (PIV). The varied parameters are the amount of axially injected air and swirl number. Subsequently, flashback safety is evaluated in the presence of axial air injection in an atmospheric combustor test rig and a stability map is recorded. The flame structure is measured using high-speed OH* chemiluminescence imaging. Simultaneous high-speed PIV measurements of the reacting flow provide insight in the time-resolved reacting flow field and indicate the flame location by evaluating the Mie scattering of the raw PIV images by means of the qualitative light sheet (QLS) technique. The isothermal tests identify the potential of axial air injection to overcome the axial velocity deficits at the nozzle outlet, which is considered crucial in order to provide flashback safety. This effect of axial air injection is shown to prevail in the presence of a flame. Generally, flashback safety is shown to benefit from an elevated amount of axial air injection and a lower swirl number. Note that the latter also leads to increased NOx emissions, while axial air injection does not. Additionally, fuel momentum is indicated to positively influence flashback resistance, although based on a different mechanism, an explanation of which is suggested. In summary, flashback-proof operation of the burner with a high amount of axial air injection is achieved on the whole operating range of the test rig at inlet temperatures of 620 K and up to stoichiometric conditions while maintaining single digit NOx emissions below a flame temperature of 2000 K.
In the current study, the influence of pressure and steam on the emission formation in a premixed natural gas flame is investigated at pressures between 1.5 bar and 9 bar.
A premixed, swirl-stabilized combustor is developed that provides a stable flame up to very high steam contents. Combustion tests are conducted at different pressure levels for equivalence ratios from lean blowout to near-stoichiometric conditions and steam-to-air mass ratios from 0% to 25%.
A reactor network is developed to model the combustion process. The simulation results match the measured NOx and CO concentrations very well for all operating conditions. The reactor network is used for a detailed investigation of the influence of steam and pressure on the NOx formation pathways.
In the experiments, adding 20% steam reduces NOx and CO emissions to below 10 ppm at all tested pressures up to near-stoichiometric conditions. Pressure scaling laws are derived: CO changes with a pressure exponent of approximately −0.5 that is not noticeably affected by the steam. For the NOx emissions, the exponent increases with equivalence ratio from 0.1 to 0.65 at dry conditions. At a steam-to-air mass ratio of 20%, the NOx pressure exponent is reduced to −0.1 to +0.25.
The numerical analysis reveals that steam has a strong effect on the combustion chemistry. The reduction in NOx emissions is mainly caused by lower concentrations of atomic oxygen at steam-diluted conditions, constraining the thermal pathway.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.