<p><span>This paper presents an analysis and design of linear quadratic regulator for reduced order full car suspension model incorporating the dynamics of the actuator to improve system performance, aims at benefiting: Ride comfort, long life of vehicle, and stability of vehicle. Vehicle’s road holding or handling and braking for good active safety and driving pleasure, and keeping vehicle occupants comfortable and reasonably well isolated from road noise, bumps, and vibrations are become a key research area conducted by many researchers around the globe. Different researchers were tested effectiveness of different controllers for different vehicle model without considering the actuator dynamics. In this paper full vehicle model was reduced to a minimal order using minimal realization technique. The entire system responses were simulated in MATLAB/Simulink environment. The effectiveness of linear quadratic regulator controller was compared for the system model with and without actuator dynamics for different road profiles. The simulation results were indicated that percentage reduction in the peak value of vertical and horizontal velocity for the linear quadratic regulator with actuator dynamics relative to linear quadratic regulator without actuator dynamics was 28.57%. Overall simulation results were demonstrated that proposed control scheme has able to improve the effectiveness of the car model for both ride comfort and stability.</span></p>
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers