Circular RNAs (circRNA) are a class of covalently closed single-stranded RNAs that have been implicated in cancer progression. Here we identify circNDUFB2 to be downregulated in non-small cell lung cancer (NSCLC) tissues, and to negatively correlate with NSCLC malignant features. Elevated circNDUFB2 inhibits growth and metastasis of NSCLC cells. Mechanistically, circNDUFB2 functions as a scaffold to enhance the interaction between TRIM25 and IGF2BPs, a positive regulator of tumor progression and metastasis. This TRIM25/circNDUFB2/IGF2BPs ternary complex facilitates ubiquitination and degradation of IGF2BPs, with this effect enhanced by N6-methyladenosine (m6A) modification of circNDUFB2. Moreover, circNDUFB2 is also recognized by RIG-I to activate RIG-I-MAVS signaling cascades and recruit immune cells into the tumor microenvironment (TME). Our data thus provide evidences that circNDUFB2 participates in the degradation of IGF2BPs and activation of anti-tumor immunity during NSCLC progression via the modulation of both protein ubiquitination and degradation, as well as cellular immune responses.
Circular RNAs (circRNAs) are identified as vital regulators in a variety of cancers. However, the role of circRNA in lung squamous cell carcinoma (LUSC) remains largely unknown. Herein, we explore the expression profiles of circRNA and mRNA in 5 paired samples of LUSC. By analyzing the co-expression network of differentially expressed circRNAs and dysregulated mRNAs, we identify that a cell cycle-related circRNA, circTP63 , is upregulated in LUSC tissues and its upregulation is correlated with larger tumor size and higher TNM stage in LUSC patients. Elevated circTP63 promotes cell proliferation both in vitro and in vivo. Mechanistically, circTP63 shares miRNA response elements with FOXM1. circTP63 competitively binds to miR-873-3p and prevents miR-873-3p to decrease the level of FOXM1, which upregulates CENPA and CENPB, and finally facilitates cell cycle progression.
We report fluorescence blinking statistics measured from single CdSe nanorods (NRs) of seven different sizes with aspect ratios ranging from 3 to 11. This study also included core/shell CdSe/ZnSe NRs and core NRs with two different surface ligands producing different degrees of surface passivation. We compare the findings for NRs to our measurements of blinking statistics from spherical CdSe core and CdSe/ZnS core/shell nanocrystals (NCs). We find that, for both NRs and spherical NCs, the off-time probability distributions are well described by a power law, while the on-time probability distributions are best described by a truncated power law, P(tau(on)) approximately tau(on)(-alpha)e((-tau)(on)/(tau)(c)). The measured crossover time, tau(c), is indistinguishable within experimental uncertainty for core and core/shell NRs, as well as for core NRs with different ligands, for the same core size, indicating that surface passivation does not affect the blinking statistics significantly. We find that, at fixed excitation intensity, 1/tau(c) increases approximately linearly with increasing NR aspect ratio; for a given sample, 1/tau(c) increases very gradually with increasing excitation intensity. Examining 1/tau(c)versus the single-particle photon absorption rate for all samples indicates that the change in NR absorption cross section with sample size can account for some but not all of the differences in crossover time. This suggests that the degree of quantum confinement may be partially responsible for the aspect ratio dependence of the crossover time.
Highlights d Disease-associated mutations endow SHP2 liquid-liquid phase separation capability d SHP2 LLPS is driven by electrostatic interactions mediated by PTP domain d SHP2 allosteric inhibitors block SHP2 LLPS by locking SHP2 in closed conformation d Mutant SHP2 can recruit and activate WT SHP2 in LLPS to promote MAPK activation
BackgroundEthanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion.ResultsC3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7ErbB2) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130Cas, as well as interactions among these proteins. C3G abolished ethanol-mediated p130Cas/JNK interaction.ConclusionsC3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.
We have recently shown that a 150-bp Col10a1 distal promoter (−4296 to −4147 bp) is sufficient to direct hypertrophic chondrocyte-specific reporter (LacZ) expression in vivo. More recently, through detailed sequence analysis we identified two putative tandem-repeat Runx2 binding sites within the 3′-end of this 150-bp region (TGTGGG-TGTGGC, −4187 to −4176 bp). Candidate electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation, and transfection studies demonstrate that these putative Runx2 sites bind Runx2 and mediate upregulated Col10a1/reporter activity in vitro. Transgenic studies using the 5′-sequence without Runx2 sites were not able to drive the cell-specific LacZ reporter activity, suggesting the in vivo requirement of the Runx2 sites located in the 3′-end in mediating Col10a1/reporter expression. Indeed, mutating the Runx2 sites in the context of the 150-bp promoter abolishes its capacity to drive hypertrophic chondrocyte-specific reporter expression in transgenic mice. We have also generated multiple transgenic mouse lines using only the 3′-sequence containing the Runx2 sites to drive the LacZ gene. Interestingly, no hypertrophic chondrocyte-specific blue staining was observed in these transgenic mice. Together, our data support that Runx2 directly interacts with murine Col10a1 cis-enhancer. This interaction is required but not sufficient for cell-specific Col10a1 promoter activity in vivo. Additional cooperative/repressive elements within the 5′- or 3′-sequences of this 150-bp promoter are needed to work with Runx2 together to mediate cell-specific Col10a1 expression. Further delineation of these elements/factors has the potential to identify novel therapeutic targets for multiple skeletal disorders, including osteoarthritis, that show abnormal Col10a1 expression and altered chondrocyte maturation. © 2011 American Society for Bone and Mineral Research
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers