5Publications

27,422Citation Statements Received

288Citation Statements Given

How they've been cited

40,326

76

27,334

12

How they cite others

218

5

283

0

Publications

Order By: Most citations

The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity.

Genome-wide association studies, which typically report regression coefficients summarizing the associations of many genetic variants with various traits, are potentially a powerful source of data for Mendelian randomization investigations. We demonstrate how such coefficients from multiple variants can be combined in a Mendelian randomization analysis to estimate the causal effect of a risk factor on an outcome. The bias and efficiency of estimates based on summarized data are compared to those based on individual-level data in simulation studies. We investigate the impact of gene–gene interactions, linkage disequilibrium, and ‘weak instruments’ on these estimates. Both an inverse-variance weighted average of variant-specific associations and a likelihood-based approach for summarized data give similar estimates and precision to the two-stage least squares method for individual-level data, even when there are gene–gene interactions. However, these summarized data methods overstate precision when variants are in linkage disequilibrium. If the P-value in a linear regression of the risk factor for each variant is less than , then weak instrument bias will be small. We use these methods to estimate the causal association of low-density lipoprotein cholesterol (LDL-C) on coronary artery disease using published data on five genetic variants. A 30% reduction in LDL-C is estimated to reduce coronary artery disease risk by 67% (95% CI: 54% to 76%). We conclude that Mendelian randomization investigations using summarized data from uncorrelated variants are similarly efficient to those using individual-level data, although the necessary assumptions cannot be so fully assessed.

Mendelian randomization-Egger (MR-Egger) is an analysis method for Mendelian randomization using summarized genetic data. MR-Egger consists of three parts: (1) a test for directional pleiotropy, (2) a test for a causal effect, and (3) an estimate of the causal effect. While conventional analysis methods for Mendelian randomization assume that all genetic variants satisfy the instrumental variable assumptions, the MR-Egger method is able to assess whether genetic variants have pleiotropic effects on the outcome that differ on average from zero (directional pleiotropy), as well as to provide a consistent estimate of the causal effect, under a weaker assumption—the InSIDE (INstrument Strength Independent of Direct Effect) assumption. In this paper, we provide a critical assessment of the MR-Egger method with regard to its implementation and interpretation. While the MR-Egger method is a worthwhile sensitivity analysis for detecting violations of the instrumental variable assumptions, there are several reasons why causal estimates from the MR-Egger method may be biased and have inflated Type 1 error rates in practice, including violations of the InSIDE assumption and the influence of outlying variants. The issues raised in this paper have potentially serious consequences for causal inferences from the MR-Egger approach. We give examples of scenarios in which the estimates from conventional Mendelian randomization methods and MR-Egger differ, and discuss how to interpret findings in such cases.Electronic supplementary materialThe online version of this article (doi:10.1007/s10654-017-0255-x) contains supplementary material, which is available to authorized users.

Appropriate methods for meta-regression applied to a set of clinical trials, and the limitations and pitfalls in interpretation, are insufficiently recognized. Here we summarize recent research focusing on these issues, and consider three published examples of meta-regression in the light of this work. One principal methodological issue is that meta-regression should be weighted to take account of both within-trial variances of treatment effects and the residual between-trial heterogeneity (that is, heterogeneity not explained by the covariates in the regression). This corresponds to random effects meta-regression. The associations derived from meta-regressions are observational, and have a weaker interpretation than the causal relationships derived from randomized comparisons. This applies particularly when averages of patient characteristics in each trial are used as covariates in the regression. Data dredging is the main pitfall in reaching reliable conclusions from meta-regression. It can only be avoided by prespecification of covariates that will be investigated as potential sources of heterogeneity. However, in practice this is not always easy to achieve. The examples considered in this paper show the tension between the scientific rationale for using meta-regression and the difficult interpretative problems to which such analyses are prone.

OnlineOpen: This article is available free online at www.blackwell-synergy.com ]Summary. Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders.

scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.

hi@scite.ai

10624 S. Eastern Ave., Ste. A-614

Henderson, NV 89052, USA

Copyright © 2024 scite LLC. All rights reserved.

Made with 💙 for researchers

Part of the Research Solutions Family.