Industrial control protocol is the basis of communication and interaction of industrial control system, and its security is related to the whole industrial infrastructure. Because many industrial control systems use proprietary protocols, it is necessary to adopt protocol reverse analysis technology to parse them and then detect whether there are secure vulnerabilities in the protocols by means of fuzzy testing. However, most of the existing technologies are designed for common network protocols, and there is no improvement for industrial control protocol. Therefore, we propose a multistage ensemble reverse analysis method, namely, MSERA, which fully considers the design concept of industrial control protocols. MSERA divides the traditional reverse analysis process into three stages and identifies the fields with different semantic characteristics in different stages and combines with field rectification to effectively improve the results of reverse analysis of industrial control protocols. Through the experimental comparison of some public and proprietary industrial control protocols, it is found that MSERA not only outperforms Netzob in the accuracy of field split but also far exceeds Netzob in semantic recognition accuracy. The experimental results show that MSERA is very practical and suitable for reverse analysis of industrial control protocols.
Accurately measuring blood flow in eye is an important challenge, as blood flow reflects the health of eye and is disrupted in many diseases. Existing techniques for measuring blood flow are limited due to the complex assumptions and calculations required. Digital image and video processing techniques started to be used for eye vessels analysis and evaluation during last decades. In this paper, we propose a method for determining the characteristics of blood flow in the vessels of eye conjunctiva, such as linear and volumetric blood speed, and topological characteristics of vascular net. The method first analyses image frame by frame sequentially and then builds integral optical flow for video sequence. Dynamic characteristics of eye vessels are introduced and calculated. These characteristics make it possible to determine changes in blood flow in eye vessels. We show the efficiency of our method in real eye vessels scenes.Povzetek: Razvit je nov sistem za določanje pretoka krvi v očeh.
Road traffic analysis is an important task in many applications and it can be used in video surveillance systems to prevent many undesirable events. In this paper, we propose a new method based on integral optical flow to analyze cars movement in video and detect flow extreme situations in real-world videos. Firstly, integral optical flow is calculated for video sequences based on optical flow, thus random background motion is eliminated; secondly, pixel-level motion maps which describe cars movement from different perspectives are created based on integral optical flow; thirdly, region-level indicators are defined and calculated; finally, threshold segmentation is used to identify different cars movements. We also define and calculate several parameters of moving car flow including direction, speed, density, and intensity without detecting and counting cars. Experimental results show that our method can identify cars directional movement, cars divergence and cars accumulation effectively.
With the acceleration of urbanization, climate problems affecting human health and safe operation of cities have intensified, such as heat island effect, haze, and acid rain. Using high-resolution remote sensing mapping image data to design scientific and efficient algorithms to excavate and plan urban ventilation corridors and improve urban ventilation environment is an effective way to solve these problems. In this paper, we use unmanned aerial vehicle (UAV) tilt photography technology to obtain high-precision remote sensing image digital elevation model (DEM) and digital surface model (DSM) data, count the city’s dominant wind direction in each season using long-term meteorological data, and use building height to calculate the dominant wind direction. The projection algorithm calculates the windward area density of this dominant direction. Under the guidance of K-means, the binarized windward area density map is used to determine each area and boundary of potential ventilation corridors within the threshold range, and the length and angle of each area’s fitted elliptical long axis are calculated to extract the ventilation corridors that meet the criteria. On the basis of high-precision stereo remote sensing data from UAV, the paper uses image classification, segmentation, fitting, and fusion algorithms to intelligently mine potential urban ventilation corridors, and the effectiveness of the proposed method is demonstrated through a case study in Zhuji City, Zhejiang Province.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.