Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. It is widely believed that the host specificity is determined by specific recognition of bacterially derived Nod factors by the cognate host receptor(s). Here we describe the positional cloning of two soybean genes Rj2 and Rfg1 that restrict nodulation with specific strains of Bradyrhizobium japonicum and Sinorhizobium fredii, respectively. We show that Rj2 and Rfg1 are allelic genes encoding a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant resistance (R) proteins. The involvement of host R genes in the control of genotype-specific infection and nodulation reveals a common recognition mechanism underlying symbiotic and pathogenic host-bacteria interactions and suggests the existence of their cognate avirulence genes derived from rhizobia. This study suggests that establishment of a root nodule symbiosis requires the evasion of plant immune responses triggered by rhizobial effectors.soybean | nodulation | nitrogen fixation | defense
SummaryLegume plants are able to engage in root nodule symbiosis with nitrogen-fixing soil bacteria, collectively called rhizobia. This mutualistic association is highly specific, such that each rhizobial species/ strain interacts with only a specific group of legumes, and vice versa. Symbiosis specificity can occur at multiple phases of the interaction, ranging from initial bacterial attachment and infection to late nodule development associated with nitrogen fixation. Genetic control of symbiosis specificity is complex, involving fine-tuned signal communication between the symbiotic partners. Here we review our current understanding of the mechanisms used by the host and bacteria to choose their symbiotic partners, with a special focus on the role that the host immunity plays in controlling the specificity of the legume -rhizobial symbiosis.
Alfalfa is economically the most important forage legume worldwide. A recurrent challenge to alfalfa production is the significant yield loss caused by disease. Although knowledge of molecular mechanisms underlying host resistance should facilitate the genetic improvement of alfalfa, the acquisition of such knowledge is hampered by alfalfa's tetrasomic inheritance and outcrossing nature. However, alfalfa is congeneric with the reference legume Medicago truncatula, providing an opportunity to use M. truncatula as a surrogate to clone the counterparts of many agronomically important genes in alfalfa. In particular, the high degree of sequence identity and remarkably conserved genome structure and function between the two species enables M. truncatula genes to be used directly in alfalfa improvement. Here we report the map-based cloning of RCT1, a host resistance (R) gene in M. truncatula that confers resistance to multiple races of Colletotrichum trifolii, a hemibiotrophic fungal pathogen that causes anthracnose disease of alfalfa. RCT1 is a member of the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant R genes and confers broad-spectrum anthracnose resistance when transferred into susceptible alfalfa plants. Thus, RCT1 provides a novel resource to develop anthracnose-resistant alfalfa cultivars and contributes to our understanding of host resistance against the fungal genus Colletotrichum. This work demonstrates the potential of using M. truncatula genes for genetic improvement of alfalfa.Colletotrichum trifolii ͉ disease resistance ͉ Medicago sativa
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
The legume-rhizobial symbiosis results in the formation of root nodules that provide an ecological niche for nitrogen-fixing bacteria. However, plant-bacteria genotypic interactions can lead to wide variation in nitrogen fixation efficiency, and it is not uncommon that a bacterial strain forms functional (Fix + ) nodules on one plant genotype but nonfunctional (Fix − ) nodules on another. Host genetic control of this specificity is unknown. We herein report the cloning of the Medicago truncatula NFS1 gene that regulates the fixation-level incompatibility with the microsymbiont Sinorhizobium meliloti Rm41. We show that NFS1 encodes a nodulespecific cysteine-rich (NCR) peptide. In contrast to the known role of NCR peptides as effectors of endosymbionts' differentiation to nitrogen-fixing bacteroids, we demonstrate that specific NCRs control discrimination against incompatible microsymbionts. NFS1 provokes bacterial cell death and early nodule senescence in an allele-specific and rhizobial strain-specific manner, and its function is dependent on host genetic background.legumes | nodulation | nitrogen fixation specificity | symbiosis persistence | NCR peptides P lants of the legume family can supply their own nitrogen needs through symbioses with nitrogen-fixing soil bacteria called rhizobia. This symbiotic interaction commences when the host perceives rhizobial lipo-chitooligosaccharides known as nodulation (Nod) factors and initiates development of nodule primordia that become infected by the rhizobia (1). Infection of most legumes, including the model legume Medicago truncatula, starts in root hairs and involves formation of plant-made tubular structures known as infection threads (2). Infection threads direct bacteria to these primordia, where the rhizobia are released into the cytoplasm of host cells. During this process, the bacteria become surrounded by a host membrane, and these membrane compartments containing rhizobium are named symbiosomes. Subsequently, the rhizobia differentiate into nitrogen-fixing bacteroids (3).The legume-rhizobial symbiosis shows a high level of specificity, occurring at both species and genotypic levels (4, 5). Incompatible interactions at initial stages of the association can block bacterial infection and nodule organogenesis. This incompatibility can be caused by failed Nod factor or exopolysaccharide recognition (6-9) or by induced plant immune responses (9-11). Symbiotic incompatibility also takes place at later stages of nodule development, resulting in the formation of infected but nonfunctional nodules (12,13). This latter situation is well-documented in the Medicago-Sinorhizobium symbiosis, in which the bacteria undergo terminal differentiation (14). We previously screened a core collection of Medicago accessions using multiple Sinorhizobium meliloti strains, evaluating many host-strain combinations (13). In that experiment, ∼40% of the plant-strain combinations produced small, white infected nodules that were defective in nitrogen fixation (Fix − ) whereas only ∼2% resulte...
Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix − ). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.legumes | rhizobial symbiosis | nitrogen fixation | symbiotic specificity | NCR peptides
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers