SUMMARY Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for over 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole genome sequence analysis revealed frequent structural re-arrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.
Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor survival1–3. We sequenced 29 SCLC exomes, two genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million basepairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in histone-modifying genes, CREBBP, EP300, and MLL. Furthermore, we observed mutations in PTEN, in SLIT2, and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from p53/Rb1-deficient mice4. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genome alterations, and provides a generalizable framework for identification of biologically relevant genes in the context of high mutational background.
Breast carcinoma is the leading cause of cancer-related mortality in women worldwide with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone1. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis, and responses to available therapy2–4. Recurrent somatic alterations in breast cancer have been described including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration5. Prior DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements 6–10. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA11, TP536, AKT112, GATA313, and MAP3K110, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking estrogen and progesterone receptors and ERBB2 expression. The Magi3-Akt3 fusion leads to constitutive activation of Akt kinase, which is abolished by treatment with an ATP-competitive Akt small-molecule inhibitor.
We assessed somatic alleles of six receptor tyrosine kinase genes mutated in lung adenocarcinoma for oncogenic activity. Five of these genes failed to score in transformation assays; however, novel recurring extracellular domain mutations of the receptor tyrosine kinase gene ERBB2 were potently oncogenic. These ERBB2 extracellular domain mutants were activated by two distinct mechanisms, characterized by elevated C-terminal tail phosphorylation or by covalent dimerization mediated by intermolecular disulfide bond formation. These distinct mechanisms of receptor activation converged upon tyrosine phosphorylation of cellular proteins, impacting cell motility. Survival of Ba/F3 cells transformed to IL-3 independence by the ERBB2 extracellular domain mutants was abrogated by treatment with small-molecule inhibitors of ERBB2, raising the possibility that patients harboring such mutations could benefit from ERBB2-directed therapy.HER2 | breast cancer | bladder cancer L ung cancer is the leading cause of cancer death, accounting for over 150,000 deaths annually in the United States alone (1). Current treatment options are thus inadequate for the majority of patients and additional therapies are needed. Mutationally activated oncogenes that promote tumorigenesis represent potential drug targets due to frequent dependency of tumor cells on such oncogenes (2, 3), and somatically altered receptor tyrosine kinases in particular have been successfully exploited as therapeutic targets in several cancers.The prototypical therapy targeted to a somatically activated tyrosine kinase oncogene is imatinib mesylate, which targets the BCR-ABL fusion protein in chronic myelogenous leukemia (4). Targeted therapies developed for lung cancer include gefitinib and erlotinib, small-molecule inhibitors of mutationally activated EGFR in lung adenocarcinoma (5-8), and crizotinib, a smallmolecule inhibitor of the EML4-ALK translocation product in lung adenocarcinoma (9). Trastuzumab, a monoclonal antibody inhibitor targeting ERBB2, and the small-molecule EGFR/ ERBB2 inhibitor lapatinib are effective in ERBB2-amplified patients with breast cancer (10, 11).The advent of next-generation sequencing technologies has enabled compilation of large somatic mutation datasets from cancer sequencing studies. Statistical methods that examine differences in gene mutation frequency can reveal evidence of positive selection; however, demonstration of the contribution of a mutated gene to tumorigenesis additionally requires functional validation. To identify new lung cancer oncogenes, we systematically assessed somatic alleles of significantly mutated receptor tyrosine kinase genes reported in patients with lung adenocarcinoma (12) for activity in cellular transformation assays.Although most receptor tyrosine kinase mutations tested failed to score, novel extracellular domain mutations of ERBB2 were oncogenic. Our results indicate a unique therapeutic opportunity for patients with lung and breast cancer who harbor extracellular domain mutations of ERBB2. Resul...
Small cell lung cancer (SCLC) is an aggressive cancer often diagnosed after it has metastasized. Despite the need to better understand this disease, SCLC remains poorly characterized at the molecular and genomic levels. Using a genetically engineered mouse model of SCLC driven by conditional deletion of Trp53 and Rb1 in the lung, we identified several frequent, high-magnitude focal DNA copy number alterations in SCLC. We uncovered amplification of a novel, oncogenic transcription factor, Nuclear factor I/B (Nfib), in the mouse SCLC model and in human SCLC. Functional studies indicate that NFIB regulates cell viability and proliferation during transformation.
PX-866 was relatively well tolerated. Overall response rate was low, and the study did not meet its primary endpoint; however, 21% of participants obtained durable stable disease. This study also failed to identify a statistically significant association between clinical outcome and relevant biomarkers in patients with available tissue.
Lung cancer is the leading cause of cancer-specific death among Canadians, with non-small-cell lung cancer (nsclc) being the most common histologic variant. Despite advances in the understanding of the molecular biology of nsclc, the survival rate for this malignancy is still poor. It is now understood that, to evade detection and immune clearance, nsclc tumours overexpress the immunosuppressive checkpoint protein programmed death ligand 1 (PD-L1). Inhibiting the PD-1/PD-L1 axis with monoclonal antibodies has significantly changed the treatment landscape in nsclc during the last 5 years. Despite evidence of clinical response in some patients, only approximately 20% of patients obtain any durable benefit, and many of the patients who do respond ultimately relapse with drug-resistant disease. The identification of patients who are most likely to benefit from such therapy is therefore important. In the present review, we cover the basics of the PD-1/PD-L1 axis and its clinical significance in nsclc, biomarkers that are predictive of treatment response, relevant clinical trials of PD-1/PD-L1 blockade completed to date, and proposed mechanisms of acquired therapeutic resistance.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers