Normal human breathing exhibits complex variability in both respiratory rhythm and volume. Analyzing such nonlinear fluctuations may provide clinically relevant information in patients with complex illnesses such as asthma. We compared the cycle-by-cycle fluctuations of inter-breath interval (IBI) and lung volume (LV) among healthy volunteers and patients with various types of asthma. Continuous respiratory datasets were collected from forty age-matched men including 10 healthy volunteers, 10 patients with controlled atopic asthma, 10 patients with uncontrolled atopic asthma, and 10 patients with uncontrolled non-atopic asthma during 60 min spontaneous breathing. Complexity of breathing pattern was quantified by calculating detrended fluctuation analysis, largest Lyapunov exponents, sample entropy, and cross-sample entropy. The IBI as well as LV fluctuations showed decreased long-range correlation, increased regularity and reduced sensitivity to initial conditions in patients with asthma, particularly in uncontrolled state. Our results also showed a strong synchronization between the IBI and LV in patients with uncontrolled asthma. Receiver operating characteristic (ROC) curve analysis showed that nonlinear analysis of breathing pattern has a diagnostic value in asthma and can be used in differentiating uncontrolled from controlled and non-atopic from atopic asthma. We suggest that complexity analysis of breathing dynamics may represent a novel physiologic marker to facilitate diagnosis and management of patients with asthma. However, future studies are needed to increase the validity of the study and to improve these novel methods for better patient management.
In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of “memory length” was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are ‘forgotten’ quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations.
We designed an artificial neural network (ANN) to diagnose cirrhosis in patients with chronic HBV infection. Routine laboratory data (PT, INR, platelet count, direct bilirubin, AST/ALT, AST/PLT) and age were collected from 144 patients. Cirrhosis in these patients was diagnosed by liver biopsy. The ANN's ability was assessed using receiver-operating characteristic (ROC) analysis and the results were compared with a logistic regression model. Our results indicate that the neural network analysis is likely to provide a non-invasive, accurate test for diagnosing cirrhosis in chronic HBV-infected patients, only based on routine laboratory data.
Arterial blood gas (ABG) has an important role in the clinical assessment of patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Because of ABG complications, an alternative method is beneficial. We have trained and tested five artificial neural networks (ANNs) with venous blood gas (VBG) values (pH, PCO(2), HCO(3), PO(2), and O(2) saturation) as inputs, to predict ABG values in patients with AECOPD. Venous and arterial blood samples were collected from 132 patients. Using the data of 106 patients, the ANNs were trained and validated by back-propagation algorithm. Subsequently, data from the remainder 26 patients was used for testing the networks. The ability of ANNs to predict ABG values and to detect significant hypercarbia was assessed and the results were compared with a linear regression model. Our results indicate that the ANNs provide an accurate method for predicting ABG values from VBG values and detecting hypercarbia in AECOPD.
These results indicate that the nonlinear methods can be adapted to closely simulate variable conditions and used to study the patterns of volume changes during normal and asynchronous breathing.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.