The meaning of gene therapy is the delivery of DNA or RNA to cells for the treatment or prevention of genetic disorders. The success rate of gene therapy depends on the progression and safe gene delivery system. The vectors available for gene therapy are divided into viral and non-viral systems. Viral vectors cause higher transmission efficiency and long gene expression, but they have major problems, such as immunogenicity, carcinogenicity, the inability to transfer large size genes and high costs. Non-viral gene transfer vectors have attracted more attention because they exhibit less toxicity and the ability to transfer large size genes. However, the clinical application of non-viral methods still faces some limitations, including low transmission efficiency and poor gene expression. In recent years, numerous methods and gene-carriers have been developed to improve gene transfer efficiency. The use of Polyethylenimine (PEI) based transfer of collaboration may create a new way of treating diseases and the combination of chemotherapy and gene therapy. The purpose of this paper is to introduce the PEI as an appropriate vector for the effective gene delivery.
Development of biologically inspired green synthesis of silver nanoparticles has attracted considerable worldwide attention in matter of medical science and disease treatment. Herein, the green synthesis of silver nanomaterials using organic green sources has been evaluated and discussed. These kinds of materials are widely used for treatment of antibiotic-resistant bacteria, cancer and etc due to their elegant properties compared with other chemical ways and drugs. Moreover, the outcome of green-based approaches were compared with chemical procedures and obtained data were examined via various analyses including UV-visible spectroscopy, scanning electron microscope (SEM), energy dispersive Xray spectroscopy (EDX), transmission electron microscope (TEM), atomic force microscopy (AFM) and Fourier transforms infrared spectroscopy (FT-IR). In this study, variety of green methods were investigated to present a summary of recent achievements toward highlighting biocompatible nanoparticles, all of which can reduce the toxicity of nanoparticles, make them eco-friendly, reduce their side effects and decrease the production cost. The nature of these biological organisms also affect the structure, shape, size and morphology of synthesized nanoparticles.
Rhodanines are accepted as advantaged heterocycles in medicinal chemistry as one of the 4-thiazolidinones subtypes. The aim of this paper is to analyze the features of rhodanine and its application in pharmacy and medicine. Some of the properties of rhodanine such as antiviral, anticancer, antimicrobial, and drug discovery have recently been reported. Although there are still vague points in the structure and mechanism of polymerization of this substance, there is a significant increase in the use of rhodanine in medicine. In this review paper, it can be said that we have provided a general overview of the recent advances in the rhodanine-based material which its application is more in the field of drug discovery and anticancer activity. The review starts with a summary of the antiviral activity of rhodanine-based materials and nanocomposites in general. Then in the next step, the detailed description is followed on their applications in the fields of anticancer activity, drug discovery, and an innovative type of rhodanine (RH) and thiohydantoin (TH) derivatives were created and combined in order to recognize tau pathology in the brains of patients with Alzheimer's disease (AD). Through this review, we hope to promote rhodanine and its role in medicine and pharmacy becomes more prominent.
Currently, due to uprising concerns about wound infections, healing agents have been regarded as one of the major solutions in the treatment of different skin lesions. The usage of temporary barriers can be an effective way to protect wounds or ulcers from dangerous agents and, using these carriers can not only improve the healing process but also they can minimize the scarring and the pain suffered by the human. To cope with this demand, researchers struggled to develop wound dressing agents that could mimic the structural and properties of native skin with the capability to inhibit bacterial growth. Hence, asymmetric membranes that can impair bacterial penetration and avoid exudate accumulation as well as wound dehydration have been introduced. In general, synthetic implants and tissue grafts are expensive, hard to handle (due to their fragile nature and poor mechanical properties) and their production process is very time consuming, while the asymmetric membranes are affordable and their production process is easier than previous epidermal substitutes. Motivated by this, here we will cover different topics, first, the comprehensive research developments of asymmetric membranes are reviewed and second, general properties and different preparation methods of asymmetric membranes are summarized. In the two last parts, the role of chitosan based-asymmetric membranes and electrospun asymmetric membranes in hastening the healing process are mentioned respectively. The aforementioned membranes are inexpensive and possess high antibacterial and satisfactory mechanical properties. It is concluded that, despite the promising current investigations, much effort is still required to be done in asymmetric membranes.
In vitro detection technique Raman spectroscopy (Rs), in one number times another Rs based expert ways of art and so on, are useful instruments for cancer discovery. top gave greater value to Raman spectroscopy sers is a relatively new careful way for in vitro and in vivo discovery that takes away bad points of simple Raman spectroscopy (Rs). Raman spectroscopy (RS) and in particular, multiple RS-based techniques are useful for cancer detection. Surface enhanced Raman spectroscopy (SERS) is a relatively new method for both in vitro and in vivo detection, which eliminates the drawbacks of simple RS. Using nanoparticles has elevated the sensitivity and specificity of SERS. SERS has the potential to increase sensitivity, specificity and spatial resolution in cancer detection, especially in cooperation with other diagnostic imaging tools such as magnetic resonance imaging (MRI) and PET-scan polyethylene terephthalate. Developing a hand held instrument for detecting cancer or other illnesses may also be feasible by using SERS. Frequently, novel nanoparticles are used in SERS. With a focus on nanoparticle utilization, we review the benefits of RS in cancer detection and related biomarkers. With a focus on nanoparticles utilizations, the benefits of RS in cancer detection and related biomarkers were reviewed. In addition, Raman applications to detect some of prevalent were discussed. Also more investigated cancers such as breast and colorectal cancer, multiple nanostructures and their possible special biomarkers, especially as SERS nano-tag have been reviewed. The main purpose of this article is introducing of most popular nanotechnological approaches in cancer detection by using Raman techniques. Moreover, have been caught up on detection and reviewed some of the most prevalent and also more investigated cancers such as breast, colorectal cancer, multiple intriguing nanostructures, especially as SERS nano-tag, special cancer biomarkers and related approaches. The main purpose of this article is to introduce the most popular nanotechnological approaches in cancer detection by using Raman techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.