Atopic dermatitis (AD) is a chronic dermatosis bearing clinical, histological, and immunologic similarities to chronic allergic contact dermatitis (ACD). AD shows a Th2 cell-dominant inflammatory infiltrate, elevated serum IgE levels, a permeability barrier abnormality, and Staphylococcus aureus colonization. Repeated hapten challenges reportedly produce a Th2-like hypersensitivity reaction (Th2-like HR). Here, 9-10 challenges with oxazolone (Ox) to hairless mice also produced a chronic Th2-like HR. Permeability barrier function and expression of differentiation proteins, filaggrin, loricrin, and involucrin, became abnormal. CRTH-positive Th2-dominant inflammatory infiltrate, with increased IL-4 expression, and a large increase in serum IgE levels were observed. The barrier abnormality was associated with decreased stratum corneum (SC) ceramide content and impaired lamellar body secretion, resulting in abnormal lamellar membranes, as in human AD. Furthermore, as in human AD, epidermal serine protease activity in SC increased and expression of two lamellar body-derived antimicrobial peptides, CRAMP and mBD3, declined after Ox challenges, paralleling the decrease of their human homologues in AD. Thus, multiple Ox challenges to normal murine skin produce a chronic Th2-like HR, with multiple features of human AD. Because of its reproducibility, predictability, and low cost, this model could prove useful for evaluating both pathogenic mechanisms and potential therapies for AD.
Whereas high-dose ultraviolet B (UVB) is detrimental to the epidermal permeability barrier, suberythemal doses of UVB are used to treat atopic dermatitis (AD), which is characterized by defective permeability barrier and antimicrobial function. As epidermal permeability barrier and antimicrobial peptide (AMP) expression are coregulated and interdependent functions, we hypothesized that suberythemal doses of UVB exposure could regulate AMP expression in parallel with permeability barrier function. Hairless mice were exposed to 40 mJ cm(-2) UVB (about 1/2 minimal erythema dose) daily for 1 or 3 days. Twenty-four hours after the last exposure, epidermal barrier function was assessed and skin specimens were taken for western blotting, immunohistochemistry, and quantitative reverse transcription-PCR for mouse beta-defensin (mBD)-2, mBD3 and cathelin-related antimicrobial peptide (CRAMP). mRNA levels of the vitamin D receptor (VDR), 1alpha-hydroxylase and key epidermal lipid synthetic enzymes were also quantified. After 3 days of UVB exposure, acceleration of barrier recovery and augmentation in expression of epidermal differentiation markers (for example, involucrin and filaggrin) occurred in parallel with increased mBD2, mBD3, and CRAMP expression at both the mRNA and protein level. VDR, 1alpha-hydroxylase, and the major epidermal lipid synthetic enzymes were also upregulated. When an inhibitor of 1alpha, 25 dihydroxyvitamin D(3) formation, ketoconazole, was applied immediately after UVB exposure, the cutaneous vitamin D system was inhibited, which in turn blocked epidermal lipid synthesis, AMP expression, and permeability barrier homeostasis, suggesting that the beneficial effect of low-dose UVB depends, at least in part, on activation of the cutaneous vitamin D system. Our results provide new insights into the mechanisms whereby low-dose UVB comprises effective therapy for AD.
Mammalian epidermis normally displays a distinctive calcium gradient, with low levels in the basal/spinous layers and high levels in the stratum granulosum. Although changes in stratum granulosum calcium regulate the lamellar body secretory response to permeability barrier alterations, whether modulations in calcium also regulate the expression of differentiation-specific proteins in vivo remains unknown. As acute barrier perturbations reduce calcium levels in stratum granulosum, we studied the regulation of murine epidermal differentiation after loss of calcium accompanying acute barrier disruption and by exposure of such acutely perturbed skin sites to either low (0.03 M) or high (1.8 M) calcium. Three hours after acute barrier disruption, coincident with reduced calcium and ultrastructural evidence of accelerated lamellar body secretion, both northern analyses and in situ hybridization revealed decreased mRNA levels for loricrin, profilaggrin, and involucrin in the outer epidermis, but protein levels did not change significantly. Moreover, exposure of acutely disrupted skin sites to low calcium solutions sustained the reduction in mRNA levels, whereas exposure to high calcium solutions restored normal mRNA levels (blocked by the L-type calcium channel inhibitor, nifedipine). Finally, with prolonged exposure to a low (<10% relative humidity) or high (>80% relative humidity) humidity, calcium levels increased and declined, respectively. Accordingly, mRNA and protein levels of the differentiation-specific markers increased and decreased at low and high relative humidity, respectively. These results provide direct evidence that acute and sustained fluctuations in epidermal calcium regulate expression of differentiation-specific proteins in vivo, and demonstrate that modulations in epidermal calcium coordinately regulate events late in epidermal differentiation that together form the barrier.
Background-Compared with younger patients, myocardial infarction in the elderly has been associated with less favorable clinical outcomes, which may be attributable to a decline in angiogenic capacity in the aging heart. Methods and Results-To
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.