Although mitochondria and the Nox family of NADPH oxidase are major sources of reactive oxygen species (ROS) induced by external stimuli, there is limited information on their functional relationship. This study has shown that serum withdrawal promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. An analysis of their relationship revealed that the mitochondria respond to serum withdrawal within a few minutes, and the ROS produced by the mitochondria trigger Nox1 action by stimulating phosphoinositide 3-kinase (PI3K) and Rac1. Activation of the PI3K/ Rac1/Nox1 pathway was evident 4 -8 h after but not earlier than serum withdrawal initiation, and this time lag was found to be required for an additional activator of the pathway, Lyn, to be expressed. Functional analysis suggested that, although the mitochondria contribute to the early (0 -4 h) accumulation of ROS, the maintenance of the induced ROS levels to the later (4 -8 h) phase required the action of the PI3K/Rac1/Nox1 pathway. Serum withdrawal-treated cells eventually lost their viability, which was reversed by blocking either the mitochondria-dependent induction of ROS using rotenone or KCN or the PI3K/ Rac1/Nox1 pathway using the dominant negative mutants or small interfering RNAs. This suggests that mitochondrial ROS are essential but not enough to promote cell death, which requires the sustained accumulation of ROS by the subsequent action of Nox1. Overall, this study shows a signaling link between the mitochondria and Nox1, which is crucial for the sustained accumulation of ROS and cell death in serum withdrawal-induced signaling.
Reactive oxygen species (ROS)2 such as H 2 O 2 and O 2 . act as key mediators of the cellular signaling induced by the ligation of the cell surface receptors as well as by many classes of environmental agents (1-3). Cell stimulation by such agents has been shown to increase the cellular ROS levels, which regulate various cellular functions such as growth, differentiation, migration, and viability. Therefore, to better understand the regulatory mechanisms of diverse cell functions, it is essential that the cellular processes that lead to the induction of ROS be identified. The mitochondria and the Nox family of NADPH oxidase have emerged as major sources of ROS induction (4, 5). The mitochondria generate ROS as byproducts of respiration, and inhibitors of the mitochondrial respiratory chain, such as rotenone and KCN, have been shown to attenuate the ability of hormones and cytokines to promote the production of ROS in various cell types (6, 7). Confocal microscopy has consistently shown increased mitochondrial ROS levels as a response to cell stimulation (7,8). NADPH oxidase is a membrane enzyme that is responsible for the oxidative burst induced in activated phagocytes (9, 10). The proposed model suggests that phagocyte stimulation by fMLP results in the activation of phosphoinositide 3-kinase (PI3K), which then triggers the translocation of Rho GTPase Rac from the cytosol to the plas...
Peroxiredoxins (PRDX) are a family of thiol-dependent peroxidases. Among the six mammalian members of this family, PRDX6 is the only protein that additionally exhibits phospholipase A 2 (PLA 2 ) activity. The physiologic role of this interesting PRDX6 feature is largely unknown at present. In this study, we show that PRDX6 increases the metastatic potential of lung cancer cells. Functional analyses of the enzymatic activities of PRDX6, using specific pharmacologic inhibitors and mutagenesis studies, reveal that both peroxidase and PLA 2 activities are required for metastasis. Specifically, peroxidase activity facilitates the growth of cancer cells, and PLA 2 activity promotes invasiveness. Further investigation of the latter event discloses that PLA 2 activity promotes accumulation of arachidonic acid, which, in turn, induces the invasive pathway involving p38 kinase, phosphoinositide 3-kinase, Akt, and urokinase-type plasminogen activator. This study is the first to define the functions of the enzymatic activities of PRDX6 in metastasis and to show the involvement of arachidonic acid in PRDX6 action in intact cells. These novel findings provide a significant step toward elucidating the role of PRDX6 in cancer and the mechanism of its action.
The eukaryotic initiation factor 5A (eIF5A) contains a polyamine-derived amino acid, hypusine [Nε-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed post-translationally by the addition of the 4-aminobutyl moiety from the polyamine spermidine to a specific lysine residue, catalyzed by deoxyhypusine synthase (DHPS), and by subsequent hydroxylation by deoxyhypusine hydroxylase (DOHH). The eIF5A precursor protein and both of its modifying enzymes are highly conserved, suggesting a vital cellular function for eIF5A and its hypusine modification. To address the functions of eIF5A and the first modification enzyme, DHPS, in mammalian development, we knocked out the Eif5a or the Dhps gene in mice. Eif5a heterozygous knockout mice and Dhps heterozygous knockout mice were viable and fertile. However, homozygous Eif5a1 gt/gt embryos and Dhps gt/gt embryos died early in embryonic development, between E3.5 and E7.5. Upon transfer to in vitro culture, homozygous Eif5a gt/gt or Dhps gt/gt blastocysts at E3.5 showed growth defects when compared to heterozygous or wild type blastocysts. Thus, the knockout of either the eIF5A-1 gene (Eif5a) or of the deoxyhypusine synthase gene (Dhps) caused early embryonic lethality in mice, indicating the essential nature of both eIF5A-1 and deoxyhypusine synthase in mammalian development.
Eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential for eukaryotic cell proliferation and is the only protein containing hypusine, [N ε -(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the posttranslational synthesis of hypusine. eIF5A also undergoes an acetylation at specific Lys residue(s). In this study, we have investigated the effect of hypusine modification and acetylation on the subcellular localization of eIF5A. Immunocytochemical analyses showed differences in the distribution of non-hypusinated eIF5A precursor and the hypusine-containing mature eIF5A. While the precursor is found in both cytoplasm and nucleus, the hypusinated eIF5A is primarily localized in cytoplasm. eIF5A mutant proteins, defective in hypusine modification (K50A, K50R) were localized in a similar manner to the eIF5A precursor, whereas hypusine-modified mutant proteins (K47A, K47R, K68A) were localized mainly in the cytoplasm. These findings provide strong evidence that the hypusine modification of eIF5A dictates its localization in the cytoplasmic compartment where it is required for protein synthesis.
Recent studies suggested that induced pluripotent stem cells (iPSCs) retain a residual donor cell gene expression which may impact their capacity to differentiate into cell of origin. Here we addressed a contribution of a lineage stage-specific donor cell memory in modulating the functional properties of iPSCs. iPSCs were generated from hepatic lineage cells at an early (hepatoblast-derived, HB-iPSCs) and end stage (adult hepatocyte, AH-iPSCs) of hepatocyte differentiation as well as from mouse fetal fibroblasts (MEF-iPSCs) using a lentiviral vector encoding four pluripotency-inducing factors Oct4, Sox2, Klf4, and c-Myc. All resulting iPS cell lines acquired iPSCs phenotype as judged by the accepted criteria including morphology, expression of pluripotency markers, silencing of transducing factors, capacity of multilineage differentiation in teratoma assay and normal diploid karyotype. However, HB-iPSCs were more efficient in directed differentiation towards hepatocytic lineage as compared to AH-iPSCs, MEF-iPSCs or mESCs. Extensive comparative transcriptome analyses of the early passage iPSCs, donor cells and mESCs revealed that despite global similarities in gene expression patterns between generated iPSCs and mESCs, HB-iPSCs retained a transcriptional memory (7 up- and 17 down-regulated genes) typical of the original cells. Continuous passaging of HB-iPSCs erased most of these differences including a superior capacity for hepatic re-differentiation. These results suggest that retention of lineage stage-specific donor memory in iPSCs may facilitate differentiation into donor cell type. The identified gene set help to improve hepatic differentiation for therapeutic applications and contribute to the better understanding of liver development.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.