The replacement of fossil fuels by a clean and renewable energy source is one of the most urgent and challenging issues our society is facing today, which is why intense research has been devoted to this topic recently. Nature has been using sunlight as the primary energy input to oxidise water and generate carbohydrates (solar fuel) for over a billion years. Inspired, but not constrained, by nature, artificial systems can be designed to capture light and oxidise water and reduce protons or other organic compounds to generate useful chemical fuels. This tutorial review covers the primary topics that need to be understood and mastered in order to come up with practical solutions for the generation of solar fuels. These topics are: the fundamentals of light capturing and conversion, water oxidation catalysis, proton and CO2 reduction catalysis and the combination of all of these for the construction of complete cells for the generation of solar fuels.
Isostructural cubane-shaped catalysts [Co(III)(4)(μ-O)(4)(μ-CH(3)COO)(4)(p-NC(5)H(4)X)(4)], 1-X (X = H, Me, t-Bu, OMe, Br, COOMe, CN), enable water oxidation under dark and illuminated conditions, where the primary step of photoinduced electron transfer obeys to Hammett linear free energy relationship behavior. Ligand design and catalyst optimization are instrumental for sustained O(2) productivity with quantum efficiency up to 80% at λ > 400 nm, thus opening a new perspective for in vitro molecular photosynthesis.
Photoinduced water oxidation to molecular oxygen takes place in systems made of [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as the photosensitizer, [Co4O4(O2CMe)4(py)4] (py = pyridine) as the molecular catalyst and Na2S2O8 as the sacrificial electron acceptor. The photochemical quantum yield of the process reaches the outstanding value of 30% and depends on pH and catalyst concentration. Transient absorption spectroscopy experiments aimed to clarify the first events of the photocatalytic process are also reported.
The oxygen in Earth's atmosphere is there primarily because of water oxidation performed by photosynthetic organisms using solar light and one specialized protein complex, photosystem II (PSII). High-resolution imaging of the PSII 'core' complex shows the ideal co-localization of multi-chromophore light-harvesting antennas with the functional reaction center. Man-made systems are still far from replicating the complexity of PSII as the majority of PSII-mimetics have been limited to photocatalytic dyads based on a 1:1 ratio of a light absorber, generally a Rupolypyridine complex, with a water oxidation catalyst. Here we report the self-assembly of multi-perylene-bisimide chromophores (PBI) shaped to function by interaction with a polyoxometalate water-oxidation catalyst (Ru 4 POM). The resulting [PBI] 5 Ru 4 POM complex shows: a robust amphiphilic structure and dynamic aggregation into large 2D-paracrystalline domains, a red-shifted light-harvesting efficiency > 40%, and favorable exciton accumulation, with a peak quantum efficiency using 'green' photons (λ> 500 nm). The modularity of the building blocks and the simplicity of the non-covalent chemistry offer opportunities for innovation in artificial photosynthesis.
The tetraruthenium polyoxometalate [Ru(4)(μ-O)(4)(μ-OH)(2)(H(2)O)(4)(γ-SiW(10)O(36))(2)](10-) (1) behaves as a very efficient water oxidation catalyst in photocatalytic cycles using Ru(bpy)(3)(2+) as sensitizer and persulfate as sacrificial oxidant. Two interrelated issues relevant to this behavior have been examined in detail: (i) the effects of ion pairing between the polyanionic catalyst and the cationic Ru(bpy)(3)(2+) sensitizer, and (ii) the kinetics of hole transfer from the oxidized sensitizer to the catalyst. Complementary charge interactions in aqueous solution leads to an efficient static quenching of the Ru(bpy)(3)(2+) excited state. The quenching takes place in ion-paired species with an average 1:Ru(bpy)(3)(2+) stoichiometry of 1:4. It occurs by very fast (ca. 2 ps) electron transfer from the excited photosensitizer to the catalyst followed by fast (15-150 ps) charge recombination (reversible oxidative quenching mechanism). This process competes appreciably with the primary photoreaction of the excited sensitizer with the sacrificial oxidant, even in high ionic strength media. The Ru(bpy)(3)(3+) generated by photoreaction of the excited sensitizer with the sacrificial oxidant undergoes primary bimolecular hole scavenging by 1 at a remarkably high rate (3.6 ± 0.1 × 10(9) M(-1) s(-1)), emphasizing the kinetic advantages of this molecular species over, e.g., colloidal oxide particles as water oxidation catalysts. The kinetics of the subsequent steps and final oxygen evolution process involved in the full photocatalytic cycle are not known in detail. An indirect indication that all these processes are relatively fast, however, is provided by the flash photolysis experiments, where a single molecule of 1 is shown to undergo, in 40 ms, ca. 45 turnovers in Ru(bpy)(3)(3+) reduction. With the assumption that one molecule of oxygen released after four hole-scavenging events, this translates into a very high average turnover frequency (280 s(-1)) for oxygen production.
The functional core of oxygenic photosynthesis is in charge of catalytic water oxidation by a multi-redox Mn(III)/Mn(IV) manifold that evolves through five electronic states (S(i), where i=0-4). The synthetic model system of this catalytic cycle and of its S0→S4 intermediates is the expected turning point for artificial photosynthesis. The tetramanganese-substituted tungstosilicate [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-)(Mn4POM) offers an unprecedented mimicry of the natural system in its reduced S0 state; it features a hybrid organic-inorganic coordination sphere and is anchored on a polyoxotungstate. Evidence for its photosynthetic properties when combined with [Ru(bpy)3](2+) and S2O8(2-) is obtained by nanosecond laser flash photolysis; its S0→S1 transition within milliseconds and multiple-hole-accumulating properties were studied. Photocatalytic oxygen evolution is achieved in a buffered medium (pH 5) with a quantum efficiency of 1.7%.
Water oxidation catalysts: evolution of [Co(4)(H(2)O)(2)(α-PW(9)O(34))(2)](10-) to catalytically active species is assessed by laser flash photolysis in sacrificial photocatalytic cycles with Ru(bpy)(3)(2+) as a photosensitizer.
Mastering the light-induced four-electron oxidation of water to molecular oxygen is a key step towards the achievement of overall water splitting to produce alternative solar fuels. In this work, we report two rugged molecular pyrazolate-based diruthenium complexes that efficiently catalyze visible-light-driven water oxidation. These complexes were fully characterized both in the solid state (by X-ray diffraction analysis) and in solution (spectroscopically and electrochemically). Benchmark performances for homogeneous oxygen production have been obtained for both catalysts in the presence of a photosensitizer and a sacrificial electron acceptor at pH 7, and a turnover frequency of up to 11.1 s(-1) and a turnover number of 5300 were obtained after three successive catalytic runs. Under the same experimental conditions with the same setup, the pyrazolate-based diruthenium complexes outperform other well-known water oxidation catalysts owing to both electrochemical and mechanistic aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.