A new upper limit on the 21-cm signal power spectrum at a redshift of z ≈ 9.1 is presented, based on 141 hours of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally-smooth gain-calibration, Gaussian Process Regression (GPR) foreground mitigation and optimally-weighted power spectrum inference. Previously seen 'excess power' due to spectral structure in the gain solutions has markedly reduced but some excess power still remains with a spectral correlation distinct from thermal noise. This excess has a spectral coherence scale of 0.25 − 0.45 MHz and is partially correlated between nights, especially in the foreground wedge region. The correlation is stronger between nights covering similar local sidereal times. A best 2-σ upper limit of ∆ 2 21 < (73) 2 mK 2 at k = 0.075 h cMpc −1 is found, an improvement by a factor ≈ 8 in power compared to the previously reported upper limit. The remaining excess power could be due to residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radio-frequency interference. We discuss future improvements to the signal processing chain that can further reduce or even eliminate these causes of excess power.
The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction -the spherical-average, mean-free-path and friends-offriends methods -and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone and redshift space distortion effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the mean-free-path method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The light-cone effect is found to affect data spanning more than about 10 MHz in frequency (∆z ∼ 0.5). We find that redshift space distortions only marginally affect the bubble size distributions.
We present analysis of the normalised 21-cm bispectrum from fully-numerical simulations of intergalactic-medium heating by stellar sources and high-mass X-ray binaries (HMXB) during the cosmic dawn. Lyman-α coupling is assumed to be saturated, we therefore probe the nature of non-Gaussianities produced by X-ray heating processes. We find the evolution of the normalised bispectrum to be very different from that of the power spectrum. It exhibits a turnover whose peak moves from large to small scales with decreasing redshift, and corresponds to the typical separation of emission regions. This characteristic scale reduces as more and more regions move into emission with time. Ultimately, small-scale fluctuations within heated regions come to dominate the normalised bispectrum, which at the end of the simulation is almost entirely driven by fluctuations in the density field. To establish how generic the qualitative evolution of the normalised bispectrum we see in the stellar + HMXB simulation is, we examine several other simulations -two fully-numerical simulations that include QSO sources, and two with contrasting source properties produced with the semi-numerical simulation 21CMFAST . We find the qualitative evolution of the normalised bispectrum during X-ray heating to be generic, unless the sources of X-rays are, as with QSOs, less numerous and so exhibit more distinct isolated heated profiles. Assuming mitigation of foreground and instrumental effects are ultimately effective, we find that we should be sensitive to the normalised bispectrum during the epoch of heating, so long as the spin temperature has not saturated by z ≈ 19.
We derive constraints on the thermal and ionization states of the intergalactic medium (IGM) at redshift ≈ 9.1 using new upper limits on the 21-cm power spectrum measured by the LO-FAR radio-telescope and a prior on the ionized fraction at that redshift estimated from recent cosmic microwave background (CMB) observations. We have used results from the reionization simulation code GRIZZLY and a Bayesian inference framework to constrain the parameters which describe the physical state of the IGM. We find that, if the gas heating remains negligible, an IGM with ionized fraction 0.13 and a distribution of the ionized regions with a characteristic size 8 h −1 comoving megaparsec (Mpc) and a full width at the half maximum (FWHM) 16 h −1 Mpc is ruled out. For an IGM with a uniform spin temperature T S 3 K, no constraints on the ionized component can be computed. If the large-scale fluctuations of the signal are driven by spin temperature fluctuations, an IGM with a volume fraction 0.34 of heated regions with a temperature larger than CMB, average gas temperature 7-160 K and a distribution of the heated regions with characteristic size 3.5-70 h −1 Mpc and FWHM of 110 h −1 Mpc is ruled out. These constraints are within the 95 per cent credible intervals. With more stringent future upper limits from LOFAR at multiple redshifts, the constraints will become tighter and will exclude an increasingly large region of the parameter space.
The ability of the future low frequency component of the Square Kilometre Array radio telescope (SKA-Low) to produce tomographic images of the redshifted 21-cm signal will enable direct studies of the evolution of the sizes and shapes of ionized regions during the Epoch of Reionization. However, a reliable identification of ionized regions in noisy interferometric data is not trivial. Here, we introduce an image processing method known as superpixels for this purpose. We compare this method with two other previously proposed ones, one relying on a chosen threshold and the other employing automatic threshold determination using the K-Means algorithm. We use a correlation test and compare power spectra and bubble size distributions to show that the superpixels method provides a better identification of ionized regions, especially in the case of noisy data. We also describe some possible additional applications of the superpixel method, namely the derivation of the ionization history and constraints on the source properties in specific regions.
We present the prospects of extracting information about the Epoch of Reionization by identifying the remaining neutral regions, referred to as islands, in tomographic observations of the redshifted 21-cm signal. Using simulated data sets we show that at late times the 21-cm power spectrum is fairly insensitive to the details of the reionization process but that the properties of the neutral islands can distinguish between different reionization scenarios. We compare the properties of these islands with those of ionized bubbles. At equivalent volume filling fractions, neutral islands tend to be fewer in number but larger compared to the ionized bubbles. In addition, the evolution of the size distribution of neutral islands is found to be slower than that of the ionized bubbles and also their percolation behaviour differs substantially. Even though the neutral islands are relatively rare, they will be easier to identify in observations with the low frequency component of the Square Kilometre Array (SKA-Low) due to their larger size and the lower noise levels at lower redshifts. The size distribution of neutral islands at the late stages of reionization is found to depend on the source properties, such as the ionizing efficiency of the sources and their minimum mass. We find the longest line of sight through a neutral region to be more than 100 comoving Mpc until very late stages (90-95 per cent reionized), which may have relevance for the long absorption trough at z = 5.6 − 5.8 in the spectrum of quasar ULAS J0148+0600.
We compare various foreground removal techniques that are being utilized to remove bright foregrounds in various experiments aiming to detect the redshifted 21 cm signal of neutral hydrogen from the epoch of reionization. In this work, we test the performance of removal techniques (FastICA, GMCA, and GPR) on 10 nights of LOFAR data and investigate the possibility of recovering the latest upper limit on the 21 cm signal. Interestingly, we find that GMCA and FastICA reproduce the most recent 2σ upper limit of $\Delta ^2_{21} \lt $ (73)2 mK2 at k = 0.075 hcMpc−1, which resulted from the application of GPR. We also find that FastICA and GMCA begin to deviate from the noise-limit at k-scales larger than ∼0.1 hcMpc−1. We then replicate the data via simulations to see the source of FastICA and GMCA’s limitations, by testing them against various instrumental effects. We find that no single instrumental effect, such as primary beam effects or mode-mixing, can explain the poorer recovery by FastICA and GMCA at larger k-scales. We then test scale-independence of FastICA and GMCA, and find that lower k-scales can be modelled by a smaller number of independent components. For larger scales (k ≳ 0.1 hcMpc−1), more independent components are needed to fit the foregrounds. We conclude that, the current usage of GPR by the LOFAR collaboration is the appropriate removal technique. It is both robust and less prone to overfitting, with future improvements to GPR’s fitting optimization to yield deeper limits.
The ARCADE2 and LWA1 experiments have claimed an excess over the Cosmic Microwave Background (CMB) at low radio frequencies. If the cosmological high-redshift contribution to this radio background is between 0.1% and 22% of the CMB at 1.42 GHz, it could explain the tentative EDGES Low-Band detection of the anomalously deep absorption in the 21-cm signal of neutral hydrogen. We use the upper limit on the 21-cm signal from the Epoch of Reionization (z = 9.1) based on 141 hours of observations with LOFAR to evaluate the contribution of the high redshift Universe to the detected radio background. Marginalizing over astrophysical properties of star-forming halos, we find (at 95% C.L.) that the cosmological radio background can be at most 9.6% of the CMB at 1.42 GHz. This limit rules out strong contribution of the high-redshift Universe to the ARCADE2 and LWA1 measurements. Even though LOFAR places limit on the extra radio background, excess of 0.1 − 9.6% over the CMB (at 1.42 GHz) is still allowed and could explain the EDGES Low-Band detection. We also constrain the thermal and ionization state of the gas at z = 9.1, and put limits on the properties of the first star-forming objects. We find that, in agreement with the limits from EDGES High-Band data, LOFAR data constrain scenarios with inefficient X-ray sources, and cases where the Universe was ionized by stars in massive halos only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.