In this paper, the metric approach of f (R) theory of gravity is used to investigate the exact vacuum solutions of spatially homogeneous rotating spacetimes. For this purpose, R is replaced by f (R) in the standard Einstein-Hilbert action and the set of modified Einstein field equations reduce to a single equation. We adopt the assumption of constant Ricci scalar which maybe zero or non-zero. Moreover, the energy density of the non-trivial solution has been evaluated by using the generalized Landau-Lifshitz energy-momentum complex in the perspective of f (R) gravity for some appropriate f (R) model, which turns out to be a constant quantity.
Many authors have established various integral and differential formulas involving different special functions in recent years. In continuation, we explore some image formulas associated with the product of Srivastava’s polynomials and extended Wright function by using Marichev–Saigo–Maeda fractional integral and differential operators, Lavoie–Trottier and Oberhettinger integral operators. The obtained outcomes are in the form of the Fox–Wright function. It is worth mentioning that some interesting special cases are also discussed.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.