Members of Coronaviridae family have been the source of respiratory illnesses. The outbreak of SARS-CoV-2 that produced a severe lung disease in afflicted patients in China and other countries was the reason for the incredible attention paid toward this viral infection. It is known that SARS-CoV-2 is dependent on TMPRSS2 activity for entrance and subsequent infection of the host cells and TMPRSS2 is a host cell molecule that is important for the spread of viruses such as coronaviruses.
Different factors can increase the risk of prostate cancer, including older age, a family history of the disease. Androgen receptor (AR) initiates a transcriptional cascade which plays a serious role in both normal and malignant prostate tissues. TMPRSS2 protein is highly expressed in prostate secretory epithelial cells, and its expression is dependent on androgen signals. One of the molecular signs of prostate cancer is TMPRSS2-ERG gene fusion. In TMPRSS2-ERG-positive prostate cancers different patterns of changed gene expression can be detected. The possible molecular relation between fusion positive prostate cancer patients and the increased risk of lethal respiratory viral infections especially SARS-CoV-2 can candidate TMPRSS2 as an attractive drug target. The studies show that some molecules such as nicotinamide, PARP1, ETS and IL-1R can be studied deeper in order to control SARS-CoV-2 infection especially in prostate cancer patients.
This review attempts to investigate the possible relation between the gene expression pattern that is produced through TMPRSS2-ERG fusion positive prostate cancer and the possible influence of these fluctuations on the pathogenesis and development of viral infections such as SARS-CoV-2.
Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between interferon regulatory factor 1 and hepatitis B virus pathogenesis in a larger population with longer follow-up is needed.
The pathogenesis of renal ischemia–reperfusion injury (IRI) involves both inflammatory processes and oxidative stress in the kidney. This study determined whether remote ischemic per-conditioning (RIPerC) is mediated by toll-like receptor 4 (TLR4) signaling pathway in rats. Renal IR injury was induced by occluding renal arteries for 45 min followed by 24 h of reperfusion. RIPerC included 4 cycles of 2 min of ischemia of the left femoral artery followed by 3 min of reperfusion performed at the start of renal ischemia. Rats were divided into sham, IR, and RIPerC groups. At the end of the reperfusion period, urine, blood and tissue samples were gathered. IR created kidney dysfunction, as ascertained by a significant decrease in creatinine clearance and a significant increase in sodium fractional excretion. These changes occurred in concert with a decrease in the activities of glutathione peroxidase, catalase, and superoxide dismutase with an increment in malondialdehyde levels, mRNA expression levels of TLR4 and tumor necrosis factor α (TNF-α), and histological damage in renal tissues. RIPerC treatment diminished all these changes. This study demonstrates that RIPerC has protective effects on the kidney after renal IR, which might be related to the inhibition of the TLR4 signaling pathway and augmentation of antioxidant systems.
Background: Interferon regulatory factors (IRFs) as immunoregulatory molecules have a determinative antiviral role in liver transplantation outcomes and graft rejection. Hepatitis B virus (HBV) and its antigen derivatives also choose some strategies to escape from innate immune responses. Objectives: The current study aimed at evaluating inflammatory cross-talks between pattern recognition receptors (PRRs) signaling components such as IRF3 and IRF7 with HBV infection in mRNA levels in patients undergoing liver transplantation. Methods: The 46 HBV infected liver recipients were divided into rejection experienced (20) and not experienced (26) groups and a healthy control group was also considered. Peripheral mononuclear cells (PBMCs) were isolated form each studied patient on the days 1, 4, and 7 in post-transplant period. After RNA extraction and cDNA synthesis from each collected sample, the expression levels of IRF3 and IRF7 genes were evaluated using in-house SYBER Green based the real-time polymerase chain reaction (PCR) protocols. Results: The overexpression of mRNA levels of IRF3 (3.37 folds) and IRF7 (1.74 folds) on the day 1 were found in patients experiencing rejection, compared with non-rejected ones, based on initial ischemia/reperfusion (I/R) injuries. But, the mRNA levels of IRF3 (0.53 folds) and IRF7 (0.74 folds) on the day 4 were downregulated in patients with rejected transplantation, compared with non-rejected ones. Finally, reducing the expression of IRF3 (0.54 fold) on the day 7 and upregulation of IRF7 (2.38 fold) on the day 7 were found in rejected liver recipients, compared with non-rejected ones in post-transplant period. Conclusions: Downregulation of IRF3 expression in patients with HBV infection, who experienced rejection episodes in the first week post-liver transplantation indicated that they may be at higher risk for acute rejection; the hypothesis, which should be investigated in further studies.
Introduction: Acute kidney injury (AKI) induced by renal ischemia-reperfusion (I/R) injury is a pro-inflammatory process that activates toll-like receptors (TLRs). Stem cell therapy holds a great promise for kidney repair. Therefore, we investigated the immunomodulatory role of bone marrow stromal cells (BMSCs) on TLR2 and TLR4 expression in AKI in male Sprague-Dawley rats. Methods: BMSCs were isolated from the bone marrow of male rats, cultured in DMEM, and characterized using appropriate markers before transplantation. Renal I/R was induced by 45 minutes bilateral ischemia followed by 24 hours of reperfusion. Rats received intraperitoneal injections of BMSCs (1.5 × 106 cells, i.p, per rat) immediately after termination of renal ischemia. Serum samples were collected pre-and post-stem cells injection for assessment of blood urea nitrogen (BUN) and creatinine (Cr) levels. The kidneys were harvested after 24 hours of reperfusion for structural and molecular analysis. Results: Renal I/R caused severe tissue injuries and increased the level of BUN (166.5 ± 12.9 vs. 18.25 ± 1.75) and Cr (3.7 ± 0.22 vs. 0.87 ± 0.06) compared to the sham group. In addition, mRNA expression of TLR2 and TLR4 elevated in the renal I/R group. Administration of BMSCs improved the functional and structural state of the kidney induced by I/R and down-regulated TLR2 and TLR4 gene expression. Conclusion: The results showed a highly significant renoprotection by BMSCs that indicates their therapeutic potential in I/R injures. These effects are most likely associated with the TLR2/4 signaling pathway via modulation of the inflammatory response cascades.
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.