The increased use of mobile phones has raised the question of possible health effects of such devices, particularly the risk of cancer. It seems unlikely that the low-level radiofrequency (RF) radiation emitted by them would damage DNA directly, but its ability to act as a tumor promoter is less well characterized. In the current study, we evaluated the effect of low-level RF radiation on the development of cancer initiated in mice by ionizing radiation. Two hundred female CBA/S mice were randomized into four equal groups at the age of 3 to 5 weeks. The mice in all groups except the cage-control group were exposed to ionizing radiation at the beginning of the study and then to RF radiation for 1.5 h per day, 5 days a week for 78 weeks. One group was exposed to continuous NMT (Nordic Mobile Telephones)-type frequency-modulated RF radiation at a frequency of 902.5 MHz and a nominal average specific absorption rate (SAR) of 1.5 W/kg. Another group was exposed to pulsed GSM (Global System for Mobile)-type RF radiation (carrier-wave frequency 902.4 MHz, pulse frequency 217 Hz) at a nominal average SAR of 0.35 W/kg. The control animals were sham-exposed. Body weight, clinical signs, and food and water consumption were recorded regularly. Hematological examinations and histopathological analyses of all lesions and major tissues were performed on all animals. The RF-radiation exposures did not increase the incidence of any neoplastic lesion significantly. We conclude that the results do not provide evidence for cancer promotion by RF radiation emitted by mobile phones.
To investigate the effects of extremely low frequency magnetic fields on ultraviolet radiation (UV) exposed budding yeast, haploid yeast (Saccharomyces cerevisiae) cells of the strain SEy2101a were exposed to 50 Hz sine wave magnetic field (MF) of 120 microT with simultaneous exposure to UV radiation. Most of the UV energy was in the UVB range (280-320 nm). The biologically weighted (CIE action spectrum) dose level for the UV radiation was 175 J/m2. We examined whether 50 Hz MF affected the ability of UV irradiated yeast cells to form colonies (Colony Forming Units, CFUs). In addition, the effect of coexposure on cell cycle kinetics was investigated. Although the significant effect of MF on the cell cycle phases of UV exposed yeast cells was seen only at one time point, the overall results showed that MF exposure may influence the cell cycle kinetics at the first cycle after UV irradiation. The effect of our particular MF exposure on the colony forming ability of the UV irradiated yeast cells was statistically significant 420 min after UV irradiation. Moreover, at 240, 360, and 420 min after UV irradiation, there were fewer CFUs in every experiment in (UV+MF) exposed populations than in only UV exposed yeast populations. These results could indicate that MF exposure in conjunction with UV may have some effects on yeast cell survival or growth.
We have shown elsewhere that highly non-uniform exposure to ionizing radiation from authentic Chernobyl-released and artificially-produced hot particles (fragments of nuclear fuel) transform fibroblastic 10T1/2 cells in vitro effectively. We have also shown that hot-particle exposure leads to mutation and overexpression of the tumour suppressor gene p53 (and some other growth-related genes) in mouse skin in vivo at a high frequency. In the present paper it is shown that hot-particles produced by irradiating natural uranium with slow neutrons, when implanted (immobilized) under the skin of hairless and nude mice, induce epidermal tumours in excess compared with the conventional non-threshold stochastic model of radiation-induced cancer. One explanation for the effectiveness of the hot-particle exposure, under the present assay conditions, is that the same cells in which specific radiation-induced DNA damage is most likely to occur, are forced into sustained mitotic activity in the chronic wound which develops around the radiation source (combined genotoxic and nongenotoxic effects). The results are consistent with a role for cell proliferation in multistage carcinogenesis in mouse skin.
Environmental releases of insoluble nuclear fuel compounds may occur at nuclear power plants during normal operation, after nuclear power plant accidents, and as a consequence of nuclear weapons testing. For example, the Chernobyl fallout contained extensive amounts of pulverized nuclear fuel composed of uranium and its nonvolatile fission products. The effects of these highly radioactive particles, also called hot particles, on humans are not well known due to lack of reliable data on the extent of the exposure. However, the biokinetics and biological effects of nuclear fuel compounds have been investigated in a number of experimental studies using various cellular systems and laboratory animals. In this article, we review the biokinetic properties and effects of insoluble nuclear fuel compounds, with special reference to UO2, PuO2, and nonvolatile, long-lived beta-emitters Zr, Nb, Ru, and Ce. First, the data on hot particles, including sources, dosimetry, and human exposure are discussed. Second, the biokinetics of insoluble nuclear fuel compounds in the gastrointestinal tract and respiratory tract are reviewed. Finally, short- and long-term biological effects of nonuniform alpha- and beta-irradiation on the gastrointestinal tract, lungs, and skin are discussed.Imagesp920-aFigure 1.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.