Presently, COVID-19 has posed a serious threat to researchers, scientists, health professionals, and administrations around the globe from its detection to its treatment. The whole world is witnessing a lockdown like situation because of COVID-19 pandemic. Persistent efforts are being made by the researchers to obtain the possible solutions to control this pandemic in their respective areas. One of the most common and effective methods applied by the researchers is the use of CT-Scans and X-rays to analyze the images of lungs for COVID-19. However, it requires several radiology specialists and time to manually inspect each report which is one of the challenging tasks in a pandemic. In this paper, we have proposed a deep learning neural network-based method nCOVnet, an alternative fast screening method that can be used for detecting the COVID-19 by analyzing the X-rays of patients which will look for visual indicators found in the chest radiography imaging of COVID-19 patients.
The world is suffering from an existential global health crisis known as the COVID-19 pandemic. Countries like India, Bangladesh, and other developing countries are still having a slow pace in the detection of COVID-19 cases. Therefore, there is an urgent need for fast detection with clear visualization of infection is required using which a suspected patient of COVID-19 could be saved. In the recent technological advancements, the fusion of deep learning classifiers and medical images provides more promising results corresponding to traditional RT-PCR testing while making detection and predictions about COVID-19 cases with increased accuracy. In this paper, we have proposed a deep transfer learning algorithm that accelerates the detection of COVID-19 cases by using X-ray and CT-Scan images of the chest. It is because, in COVID-19, initial screening of chest X-ray (CXR) may provide significant information in the detection of suspected COVID-19 cases. We have considered three datasets known as 1) COVID-chest X-ray, 2) SARS-COV-2 CT-scan, and 3) Chest X-Ray Images (Pneumonia). In the obtained results, the proposed deep learning model can detect the COVID-19 positive cases in ≤ 2 seconds which is faster than RT-PCR tests currently being used for detection of COVID-19 cases. We have also established a relationship between COVID-19 patients along with the Pneumonia patients which explores the pattern between Pneumonia and COVID-19 radiology images. In all the experiments, we have used the Grad-CAM based color visualization approach in order to clearly interpretate the detection of radiology images and taking further course of action.
Epilepsy is a serious chronic neurological disorder, can be detected by analyzing the brain signals produced by brain neurons. Neurons are connected to each other in a complex way to communicate with human organs and generate signals. The monitoring of these brain signals is commonly done using Electroencephalogram (EEG) and Electrocorticography (ECoG) media. These signals are complex, noisy, non-linear, non-stationary and produce a high volume of data. Hence, the detection of seizures and discovery of the brain-related knowledge is a challenging task. Machine learning classifiers are able to classify EEG data and detect seizures along with revealing relevant sensible patterns without compromising performance. As such, various researchers have developed number of approaches to seizure detection using machine learning classifiers and statistical features. The main challenges are selecting appropriate classifiers and features. The aim of this paper is to present an overview of the wide varieties of these techniques over the last few years based on the taxonomy of statistical features and machine learning classifiers—‘black-box’ and ‘non-black-box’. The presented state-of-the-art methods and ideas will give a detailed understanding about seizure detection and classification, and research directions in the future.
This paper shows how state-of-the-art state estimation techniques can be used to provide efficient solutions to the difficult problem of real-time diagnosis in mobile robots. The power of the adopted estimation techniques resides in our ability to combine particle filters with classical algorithms, such as Kalman filters. We demonstrate these techniques in two scenarios: a mobile waiter robot and planetary rovers designed by NASA for Mars exploration.
At present, optimization algorithms are used extensively. One particular type of such algorithms includes random-based heuristic population optimization algorithms, which may be created by modeling scientific phenomena, like, for example, physical processes. The present article proposes a novel optimization algorithm based on Hooke’s law, called the spring search algorithm (SSA), which aims to solve single-objective constrained optimization problems. In the SSA, search agents are weights joined through springs, which, as Hooke’s law states, possess a force that corresponds to its length. The mathematics behind the algorithm are presented in the text. In order to test its functionality, it is executed on 38 established benchmark test functions and weighed against eight other optimization algorithms: a genetic algorithm (GA), a gravitational search algorithm (GSA), a grasshopper optimization algorithm (GOA), particle swarm optimization (PSO), teaching–learning-based optimization (TLBO), a grey wolf optimizer (GWO), a spotted hyena optimizer (SHO), as well as an emperor penguin optimizer (EPO). To test the SSA’s usability, it is employed on five engineering optimization problems. The SSA delivered better fitting results than the other algorithms in unimodal objective function, multimodal objective functions, CEC 2015, in addition to the optimization problems in engineering.
Currently, the whole world is struggling with the biggest health problem COVID-19 name coined by the World Health Organization (WHO). This was raised from China in December 2019. This pandemic is going to change the world. Due to its communicable nature, it is contagious to both medically and economically. Though different contributing factors are not known yet. Herein, an effort has been made to find the correlation between temperature and different cases situation (suspected, confirmed, and death cases). For a said purpose, k-means clustering-based machine learning method has been employed on the data set from different regions of China, which has been obtained from the WHO. The novelty of this work is that we have included the temperature field in the original WHO data set and further explore the trends. The trends show the effect of temperature on each region in three different perspectives of COVID-19 – suspected, confirmed and death.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers