OBJECTIVES:Idiopathic central precocious puberty and its postponement with a (gonadotropin-releasing hormone) GnRH agonist are complex conditions, the final effects of which on bone mass are difficult to define. We evaluated bone mass, body composition, and bone remodeling in two groups of girls with idiopathic central precocious puberty, namely one group that was assessed at diagnosis and a second group that was assessed three years after GnRH agonist treatment.METHODS:The precocious puberty diagnosis and precocious puberty treatment groups consisted of 12 girls matched for age and weight to corresponding control groups of 12 (CD) and 14 (CT) girls, respectively. Bone mineral density and body composition were assessed by dual X-ray absorptiometry. Lumbar spine bone mineral density was estimated after correction for bone age and the mathematical calculation of volumetric bone mineral density. CONEP: CAAE-0311.0.004.000-06.RESULTS:Lumbar spine bone mineral density was slightly increased in individuals diagnosed with precocious puberty compared with controls; however, after correction for bone age, this tendency disappeared (CD = -0.74±0.9 vs. precocious puberty diagnosis = -1.73±1.2). The bone mineral density values of girls in the precocious puberty treatment group did not differ from those observed in the CT group.CONCLUSION:There is an increase in bone mineral density in girls diagnosed with idiopathic central precocious puberty. Our data indicate that the increase in bone mineral density in girls with idiopathic central precocious puberty is insufficient to compensate for the marked advancement in bone age observed at diagnosis. GnRH agonist treatment seems to have no detrimental effect on bone mineral density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.