Abstract. For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks.To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application -especially when dealing with real time operations such as online flood forecasting.In order to solve this problem we tested the application of Artificial Neural Networks (ANN). First studies show the ability of adequately trained multilayer feedforward networks (MLFN) to reproduce the model performance.
Key Message Morphological plasticity helps plants to cope to environmental conditions. Allometric responses of the mangrove Avicennia germinans to increasing salinity are easily detectable when focusing on the top height trees. Abstract Several studies show that mangrove trees possess high species-and site-related trait allometry, suggesting large morphological plasticity that might be related to environmental conditions, but the causes of such variation are not clearly understood and systematic quantification is still missing. Both aspects are essential for a mechanistic understanding of the development and functioning of forests. We analyzed the role of salinity in the allometric relations of the mangrove Avicennia germinans, using: (1) the top height trees (trees with the largest diameters at breast height, which reflect forest properties at the maximum use of resources); (2) the slenderness coefficient (which indicates competition and environmental conditions); and (3) the crown to DBH ratio. These standard tools for forest scientists dealing with terrestrial forests are suitable to analyze the plastic responses of mangroves to salinity. First, the top height trees help to recognize structural forest properties that are not detectable when studying the whole stand. Second, we found that at salinities above 55 %, trees are less slender and develop wider crowns in relation to DBH than when growing at lower salinities. Our results suggest a significant change in allometric traits in relation to salinity, and reflect the plastic responses of tree traits in response to environmental variation. Understanding the plastic responses of plants to their environment can help to better model, predict, and manage forests in changing environments.
Abstract. WaSiM-ETH (Gurtz et al., 2001), a widely used water balance simulation model, is tested for its suitability to serve for flow analysis in the context of rainfall runoff modelling and flood forecasting. In this paper, special focus is on the resolution of the process domain in space as well as in time. We try to couple model runs with different calculation time steps in order to reduce the effort arising from calculating the whole flow hydrograph at the hourly time step. We aim at modelling on the daily time step for water balance purposes, switching to the hourly time step whenever high-resolution information is necessary (flood forecasting). WaSiM-ETH is used at different grid resolutions, thus we try to become clear about being able to transfer the model in spatial resolution. We further use two different approaches for the overland flow time calculation within the sub-basins of the test watershed to gain insights about the process dynamics portrayed by the model. Our findings indicate that the model is very sensitive to time and space resolution and cannot be transferred across scales without recalibration.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.