The alteration of age‐related molecules in the bone marrow microenvironment is one of the driving forces in osteoporosis. These molecules inhibit bone formation and promote bone resorption by regulating osteoblastic and osteoclastic activity, contributing to age‐related bone loss. Here, we observed that the level of microRNA‐31a‐5p (miR‐31a‐5p) was significantly increased in bone marrow stromal cells (BMSCs) from aged rats, and these BMSCs demonstrated increased adipogenesis and aging phenotypes as well as decreased osteogenesis and stemness. We used the gain‐of‐function and knockdown approach to delineate the roles of miR‐31a‐5p in osteogenic differentiation by assessing the decrease of special AT‐rich sequence‐binding protein 2 (SATB2) levels and the aging of BMSCs by regulating the decline of E2F2 and recruiting senescence‐associated heterochromatin foci (SAHF). Notably, expression of miR‐31a‐5p, which promotes osteoclastogenesis and bone resorption, was markedly higher in BMSCs‐derived exosomes from aged rats compared to those from young rats, and suppression of exosomal miR‐31a‐5p inhibited the differentiation and function of osteoclasts, as shown by elevated RhoA activity. Moreover, using antagomiR‐31a‐5p, we observed that, in the bone marrow microenvironment, inhibition of miR‐31a‐5p prevented bone loss and decreased the osteoclastic activity of aged rats. Collectively, our results reveal that miR‐31a‐5p acts as a key modulator in the age‐related bone marrow microenvironment by influencing osteoblastic and osteoclastic differentiation and that it may be a potential therapeutic target for age‐related osteoporosis.
Bisphosphonate‐related osteonecrosis of the jaw (BRONJ) is a detrimental side effect of the long‐term administration of bisphosphonates. Although macrophages were reported to be an important mediator of BRONJ, the detailed potential mechanism of BRONJ remains unclear. Here, we reported an elevated TLR‐4 expression in macrophages under action of zoledronic acid (ZA), resulting in enhanced M1 macrophage polarization and decreased M2 macrophage polarization both in vitro and in vivo. After inhibiting the TLR‐4 signaling pathway, the activation of the TLR‐4/NF‐κB signaling pathway and the induction of NF‐κB nuclear translocation and production of proinflammatory cytokines by ZA were suppressed in macrophages, thereby inhibiting M1 macrophage polarization. By utilizing the TLR‐4−/− mice, development of BRONJ was markedly ameliorated, and M1 macrophages were significantly attenuated in the extraction socket tissues in the TLR‐4−/− mice. Importantly, the systemic administration of the TLR‐4 inhibitor TAK‐242 improved the wound healing of the extraction socket and decreased the incidence rate of BRONJ. Taken together, our findings suggest that TLR‐4‐mediated macrophage polarization participates in the pathogenesis of BRONJ in mice, and TLR‐4 may be a potential target for the prevention and therapeutic treatment of BRONJ.—Zhu, W., Xu, R., Du, J., Fu, Y., Li, S., Zhang, P., Liu, L., Jiang, H. Zoledronic acid promotes TLR‐4‐mediated M1 macrophage polarization in bisphosphonate‐related osteonecrosis of the jaw. FASEB J. 33, 5208–5219 (2019). http://www.fasebj.org
The dysfunction of bone marrow stromal cells (BMSCs) may be a core factor in Type 2 diabetes mellitus (T2DM) associated osteoporosis. However, the underlying mechanism is not well understood. Here, we delineated the critical role of insulin impeding osteogenesis of BMSCs in T2DM. Compared with BMSCs from healthy people (H-BMSCs), BMSCs from T2DM patient (DM-BMSCs) showed decreased osteogenic differentiation and autophagy level, and increased senescent phenotype. H-BMSCs incubated in hyperglycemic and hyperinsulinemic conditions similarly showed these phenotypes of DM-BMSCs. Notably, enhanced TGF-β1 expression was detected not only in DM-BMSCs and high-glucose and insulin-treated H-BMSCs, but also in bone callus of streptozocin-induced diabetic rats. Moreover, inhibiting TGF-β1 signaling not only enhanced osteogenic differentiation and autophagy level of DM-BMSCs, but also delayed senescence of DM-BMSCs, as well as promoted mandible defect healing of diabetic rats. Finally, we further verified that it was TGF-β receptor II (TβRII), not TβRI, markedly increased in both DM-BMSCs and insulintreated H-BMSCs. Our data revealed that insulin impeded osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence, which it should be responsible for T2DM-induced bone loss, at least in part. These findings suggest that inhibiting TGF-β1 pathway may be a potential therapeutic target for T2DM associated bone disorders.
Background Adenosine deaminases acting on RNA (ADARs) are involved in adenosine-to-inosine (A-to-I) editing and implicated in tumorigenesis and prognosis. Emerging evidence has indicated that ADAR1, an ADAR family member, participates in the regulation of various cancers; however, its biological function in oral squamous cell carcinoma (OSCC) remains unclear. This study aimed to determine the role of ADAR1 in OSCC progression. Methods ADAR1 expression in both normal tissues and carcinoma tissues and in OSCC cell lines was examined by real-time PCR and western blotting. Gain-of-function and loss-of-function approaches were used to examine the effect of ADAR1 on the migration, invasion, epithelial-mesenchymal transition (EMT) and stemness of OSCC. Furthermore, the relationship between ADAR1 and Dicer was determined by co-immunoprecipitation, and the expression of OSCC-associated oncogenic miRNAs was evaluated by real-time PCR. For in vivo experiments, a xenograft model where OSCC cells stably expressing ADAR1 were implanted was used to investigate the effect of ADAR1 on tumor growth and progression, and the expression of ADAR1, PCNA, SOX2 and POU5F1 was further detected by immunohistochemistry. The impact of ADAR1 expression on the survival status of OSCC patients was determined by survival analysis. Results ADAR1 was overexpressed in OSCC and significantly associated with poor patient survival. There was a positive correlation between ADAR1 and the migration, invasion, EMT and stemness of OSCC. Mechanistically, ADAR1 was physically associated with Dicer, and six OSCC-associated oncogenic miRNAs were increased in OSCC cells with ADAR1 overexpression. In the mouse xenograft model of OSCC, ADAR1 overexpression promoted tumor growth and progression. Moreover, ADAR1 was highly expressed in OSCC patients with low survival rates. Conclusions Our findings demonstrated that ADAR1 may play a significant role in OSCC progression via combining with Dicer to regulate oncogenic miRNA maturation and further affect cell migration and invasion. Electronic supplementary material The online version of this article (10.1186/s13046-019-1300-2) contains supplementary material, which is available to authorized users.
Bone mesenchymal stem cells (BMSCs) senescence contributes to age-related bone loss. The alveolar bone in jaws originates from neural crest cells and possesses significant site- and age-related properties. However, such intrinsic characteristics of BMSCs from alveolar bone (AB-BMSCs) and the underlying regulatory mechanisms still remain unknown. Here, we found that the expression of special AT-rich binding protein 2 (SATB2) in human AB-BMSCs significantly decreased with aging. SATB2 knockdown on AB-BMSCs from young donors displayed these aging-related phenotypes in vitro. Meanwhile, enforced SATB2 overexpression could rejuvenate AB-BMSCs from older donors. Importantly, satb2 gene- modified BMSCs therapy could prevent the alveolar bone loss during the aging of rats. Mechanistically, the stemness regulator Nanog was identified as the direct transcriptional target of SATB2 in BMSCs and functioned as a downstream mediator of SATB2. Collectively, our data reveal that SATB2 in AB-BMSCs associates with their age-related properties, and prevents AB-BMSCs senescence via maintaining Nanog expression. These findings highlight the translational potential of transcriptional factor-based cellular reprogramming for anti-aging therapy.
Decline of pluripotency in bone marrow stromal cells (BMSCs) associated with estrogen deficiency leads to a bone formation defect in osteoporosis. Special AT-rich sequence binding protein 2 (SATB2) is crucial for maintaining stemness and osteogenic differentiation of BMSCs. However, whether SATB2 is involved in estrogen-deficiency associated-osteoporosis is largely unknown. In this study, we found that estrogen mediated pluripotency and senescence of BMSCs, primarily through estrogen receptor beta (ERβ). BMSCs from the OVX rats displayed increased senescence and weaker SATB2 expression, stemness, and osteogenic differentiation, while estrogen could rescue these phenotypes. Inhibition of ERβ or ERα confirmed that SATB2 was associated with ERβ in estrogen-mediated pluripotency and senescence of BMSCs. Furthermore, estrogen mediated the upregulation of SATB2 through the induction of ERβ binding to estrogen response elements (ERE) located at -488 of the SATB2 gene. SATB2 overexpression alleviated senescence and enhanced stemness and osteogenic differentiation of OVX-BMSCs. SATB2-modified BMSCs transplantation could prevent trabecular bone loss in an ovariectomized rat model. Collectively, our study revealed the role of SATB2 in stemness, senescence, and osteogenesis of OVX-BMSCs. These results indicate that estrogen prevents osteoporosis by promoting stemness and osteogenesis, and inhibiting senescence of BMSCs through an ERβ-SATB2 pathway. Therefore, SATB2 is a novel anti-osteoporosis target gene.
Dental implants have become a widely accepted and successful treatment for fully and partially edentulous patients. Simvastatin has been applied to improve and accelerate the osseointegration of implants by increasing the quantity and quality of bone tissue. However, its potential mechanism has not been elucidated completely. Here, we found that simvastatin significantly enhanced the autophagy level of jaw-derived bone marrow stromal cells (BMSCs) and alleviated production of reactive oxygen species under unfavourable conditions. Simvastatin promoted osteogenic differentiation of BMSCs via enhanced autophagy. Furthermore, simvastatin inhibited the bone resorption activity of osteoclasts. With the use of a rat model of oral implant osseointegration, we found local injection of simvastatin displayed more new bone formation at the interface of the bone and implant compared with that of oral administration. Fluorochrome labelling histomorphometrical analysis and micro-CT also showed that simvastatin promoted the osseointegration of implants. Notably, fewer activated osteoclasts were observed in the region of osseointegration of implants from the simvastatin treatment groups, especially the local delivery of simvastatin. Collectively, our results revealed that simvastatin can increase osteoblastic differentiation of BMSCs via enhanced autophagy and decreased osteoclast activity. Thus, simvastatin could be a viable and promising drug to improve and even accelerate the osseointegration of a dental implant.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers