Although gastrointestinal cancers are frequently associated with chronic inflammation, the underlying molecular links have not been comprehensively deciphered. Using loss- and gain-of-function mice in a colitis-associated cancer model, we establish here a link comprising the gp130/Stat3 transcription factor signaling axis. Mutagen-induced tumor growth and multiplicity are reduced following intestinal epithelial cell (IEC)-specific Stat3 ablation, while its hyperactivation promotes tumor incidence and growth. Conversely, IEC-specific Stat3 deficiency enhances susceptibility to chemically induced epithelial damage and subsequent mucosal inflammation, while excessive Stat3 activation confers resistance to colitis. Stat3 has the capacity to mediate IL-6- and IL-11-dependent IEC survival and to promote proliferation through G1 and G2/M cell-cycle progression as the common tumor cell-autonomous mechanism that bridges chronic inflammation to tumor promotion.
Cell-type plasticity within a tumor has recently been suggested to cause a bidirectional conversion between tumor-initiating stem cells and nonstem cells triggered by an inflammatory stroma. NF-κB represents a key transcription factor within the inflammatory tumor microenvironment. However, NF-κB's function in tumor-initiating cells has not been examined yet. Using a genetic model of intestinal epithelial cell (IEC)-restricted constitutive Wnt-activation, which comprises the most common event in the initiation of colon cancer, we demonstrate that NF-κB modulates Wnt signaling and show that IEC-specific ablation of RelA/p65 retards crypt stem cell expansion. In contrast, elevated NF-κB signaling enhances Wnt activation and induces dedifferentiation of nonstem cells that acquire tumor-initiating capacity. Thus, our data support the concept of bidirectional conversion and highlight the importance of inflammatory signaling for dedifferentiation and generation of tumor-initiating cells in vivo.
Notch signaling regulates cell fate decisions in a wide variety of adult and embryonic tissues. Here we show that Notch pathway components and Notch target genes are upregulated in invasive pancreatic cancer, as well as in pancreatic cancer precursors from both mouse and human. In mouse pancreas, ectopic Notch activation results in accumulation of nestin-positive precursor cells and expansion of metaplastic ductal epithelium, previously identified as a precursor lesion for pancreatic cancer. Notch is also activated as a direct consequence of EGF receptor activation in exocrine pancreas and is required for TGF alpha-induced changes in epithelial differentiation. These findings suggest that Notch mediates the tumor-initiating effects of TG alpha by expanding a population of undifferentiated precursor cells.
Physiological levels of Kras(G12D) are sufficient to induce pancreatic intraepithelial neoplasias (PanINs); the mechanisms that drive PanIN progression are unknown. Here, we establish that, in addition to oncogenic Kras(G12D), IL-6 transsignaling-dependent activation of Stat3/Socs3 is required to promote PanIN progression and pancreatic ductal adenocarcinoma (PDAC). Myeloid compartment induces Stat3 activation by secreting IL-6; consequently, IL-6 transsignaling activates Stat3 in the pancreas. Using genetic tools, we show that inactivation of IL-6 transsignaling or Stat3 inhibits PanIN progression and reduces the development of PDAC. Aberrant activation of Stat3 through homozygous deletion of Socs3 in the pancreas accelerates PanIN progression and PDAC development. Our data describe the involvement of IL-6 transsignaling/Stat3/Socs3 in PanIN progression and PDAC development.
IKKbeta-dependent NF-kappaB activation plays a key role in innate immunity and inflammation, and inhibition of IKKbeta has been considered as a likely anti-inflammatory therapy. Surprisingly, however, mice with a targeted IKKbeta deletion in myeloid cells are more susceptible to endotoxin-induced shock than control mice. Increased endotoxin susceptibility is associated with elevated plasma IL-1beta as a result of increased pro-IL-1beta processing, which was also seen upon bacterial infection. In macrophages enhanced pro-IL-1beta processing depends on caspase-1, whose activation is inhibited by NF-kappaB-dependent gene products. In neutrophils, however, IL-1beta secretion is caspase-1 independent and depends on serine proteases, whose activity is also inhibited by NF-kappaB gene products. Prolonged pharmacologic inhibition of IKKbeta also augments IL-1beta secretion upon endotoxin challenge. These results unravel an unanticipated role for IKKbeta-dependent NF-kappaB signaling in the negative control of IL-1beta production and highlight potential complications of long-term IKKbeta inhibition.
Unmethylated CpG motifs in bacterial DNA, plasmid DNA and synthetic oligodeoxynucleotides (CpG ODN) activate dendritic cells (DC) and macrophages in a CD40-CD40 ligand-independent fashion. To understand the molecular mechanisms involved we focused on the cellular uptake of CpG ODN, the need for endosomal maturation and the role of the stress kinase pathway. Here we demonstrate that CpG-DNA induces phosphorylation of Jun N-terminal kinase kinase 1 (JNKK1/SEK/MKK4) and subsequent activation of the stress kinases JNK1/2 and p38 in murine macrophages and dendritic cells. This leads to activation of the transcription factor activating protein-1 (AP-1) via phosphorylation of its constituents c-Jun and ATF2. Moreover, stress kinase activation is essential for CpG-DNA-induced cytokine release of tumor necrosis factor α (TNFα) and interleukin-12 (IL-12), as inhibition of p38 results in severe impairment of this biological response. We further demonstrate that cellular uptake via endocytosis and subsequent endosomal maturation is essential for signalling, since competition by non-CpG-DNA or compounds blocking endosomal maturation such as chloroquine or bafilomycin A prevent all aspects of cellular activation. The data suggest that endosomal maturation is required for translation of intraendosomal CpG ODN sequences into signalling via the stress kinase pathway, where p38 kinase activation represents an essential step in CpG-ODN-triggered activation of antigen-presenting cells.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.