Femtocell networks, consisting of a conventional macro cellular deployment and overlaying femtocells, forming a hierarchical cell structure, constitute an attractive solution to improving the macrocell capacity and coverage. However, the inter-and intra-tier interferences in such systems can significantly reduce the capacity and cause an unacceptably high level of outage. This paper treats the uplink interference problem in orthogonal frequency-division multiple-access (OFDMA)-based femtocell networks with partial cochannel deployment. We first propose an inter-tier interference mitigation strategy without the femtocell users power control by forcing the femto-interfering macrocell users to use only some dedicated subcarriers. The noninterfering macrocell users, on the other hand, can use either the dedicated subcarriers, or the shared subcarriers which are also used by the femtocell users. We then propose subcarrier allocation schemes based on the auction algorithm for macrocell users and femtocell users, respectively, to independently mitigate the intra-tier interference. The proposed interference mitigation scheme for femtocell networks offers significant performance improvement over the existing methods by substantially reducing the inter-and intra-tier inferences in the system.
The long-term evolution (LTE) is the newly adopted technology to offer enhanced capacity and coverage for current mobility networks, which experience a constant traffic increase and skyrocketing bandwidth demands. This new cellular communication system, built upon a redesigned physical layer and based on an orthogonal frequency division multiple access (OFDMA) modulation, features robust performance in challenging multipath environments and substantially improves the performance of the wireless channel in terms of bits per second per Hertz (bps/Hz). Nevertheless, as all wireless systems, LTE is vulnerable to radio jamming attacks. Such threats have security implications especially in the case of next-generation emergency response communication systems based on LTE technologies. This proof of concept paper overviews a series of new effective attacks (smart jamming) that extend the range and effectiveness of basic radio jamming. Based on these new threats, a series of new potential security research directions are introduced, aiming to enhance the resiliency of LTE networks against such attacks. A spread-spectrum modulation of the main downlink broadcast channels is combined with a scrambling of the radio resource allocation of the uplink control channels and an advanced system information message encryption scheme. Despite the challenging implementation on commercial networks, which would require inclusion of these solutions in future releases of the LTE standard, the security solutions could strongly enhance the security of LTE-based national emergency response communication systems.
In December 2017, the Third Generation Partnership Project (3GPP) released the first set of specifications for 5G New Radio (NR), which is currently the most widely accepted 5G cellular standard. 5G NR is expected to replace LTE and previous generations of cellular technology over the next several years, providing higher throughput, lower latency, and a host of new features. Similar to LTE, the 5G NR physical layer consists of several physical channels and signals, most of which are vital to the operation of the network. Unfortunately, like for any wireless technology, disruption through radio jamming is possible. This paper investigates the extent to which 5G NR is vulnerable to jamming and spoofing, by analyzing the physical downlink and uplink control channels and signals. We identify the weakest links in the 5G NR frame, and propose mitigation strategies that should be taken into account during implementation of 5G NR chipsets and base stations.
Voice traffic termination fraud, often referred to as Subscriber Identity Module box (SIMbox) fraud, is a common illegal practice on mobile networks. As a result, cellular operators around the globe lose billions annually. Moreover, SIMboxes compromise the cellular network infrastructure by overloading local base stations serving these devices. This paper analyzes the fraudulent traffic from SIMboxes operating with a large number of SIM cards. It processes hundreds of millions of anonymized voice call detail records (CDRs) from one of the main cellular operators in the United States. In addition to overloading voice traffic, fraudulent SIMboxes are observed to have static physical locations and to generate disproportionately large volume of outgoing calls. Based on these observations, novel classifiers for fraudulent SIMbox detection in mobility networks are proposed. Their outputs are optimally fused to increase the detection rate. The operator's fraud department confirmed that the algorithm succeeds in detecting new fraudulent SIMboxes.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.