Context. The atmosphere of hot Jupiters can be probed by primary transit and secondary eclipse spectroscopy. Owing to the intense UV irradiation, mixing, and circulation, their chemical composition is maintained out of equilibrium and must be modeled with kinetic models. Aims. Our purpose is to release a chemical network and the associated rate coefficients, developed for the temperature and pressure range relevant to hot Jupiters atmospheres. Using this network, we study the vertical atmospheric composition of the two hot Jupiters (HD 209458b and HD 189733b) with a model that includes photolyses and vertical mixing, and we produce synthetic spectra. Methods. The chemical scheme has been derived from applied combustion models that were methodically validated over a range of temperatures and pressures typical of the atmospheric layers influencing the observations of hot Jupiters. We compared the predictions obtained from this scheme with equilibrium calculations, with different schemes available in the literature that contain N-bearing species, and with previously published photochemical models. Results. Compared to other chemical schemes that were not subjected to the same systematic validation, we find significant differences whenever nonequilibrium processes take place (photodissociations or vertical mixing). The deviations from the equilibrium, hence the sensitivity to the network, are larger for HD 189733b, since we assume a cooler atmosphere than for HD 209458b. We found that the abundances of NH 3 and HCN can vary by two orders of magnitude depending on the network, demonstrating the importance of comprehensive experimental validation. A spectral feature of NH 3 at 10.5 μm is sensitive to these abundance variations and thus to the chemical scheme.Conclusions. Due to the influence of the kinetics, we recommend using a validated scheme to model the chemistry of exoplanet atmospheres. The network we release is robust for temperatures within 300-2500 K and pressures from 10 mbar up to a few hundred bars, for species made of C, H, O, and N. It is validated for species up to 2 carbon atoms and for the main nitrogen species (NH 3 , HCN, N 2 , NO x ). Although the influence of the kinetic scheme on the hot Jupiters spectra remains within the current observational error bars (with the exception of NH 3 ), it will become more important for atmospheres that are cooler or subjected to higher UV fluxes, because they depart more from equilibrium.
This paper describes an experimental and modeling study of the oxidation of toluene. The low-temperature oxidation was studied in a continuous flow stirred tank reactor with carbon-containing products analyzed by gas chromatography under the following experimental conditions: temperature from 873 to 923 K, 1 bar, fuel equivalence ratios from 0.45 to 0.91, concentrations of toluene from 1.4 to 1.7%, and residence times ranging from 2 to 13 s corresponding to toluene conversion from 5 to 85%. The ignition delays of toluene-oxygen-argon mixtures with fuel equivalence ratios from 0.5 to 3 were measured behind reflected shock waves for temperatures from 1305 to 1795 K and at a pressure of 8.7 ± 0.7 bar. A detailed kinetic mechanism has been proposed to reproduce our experimental results, as well as some literature data obtained in other shock tubes and in a plug flow reactor. The main reaction paths have been determined by sensitivity and flux analyses. C
The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n-heptane, iso-octane, and toluene mixture) of close research octane number have been measured at 358 K. Non-stretched flames were stabilized on a perforated plate burner at 1 atm. The heat flux method was used to determine burning velocities under conditions for which the net heat loss of the flame is zero. Very similar values of flame velocities have been obtained for the commercial gasoline and for the proposed model fuel. The influence of ethanol as an oxygenated additive has been investigated for these two fuels and has been found to be negligible for values up to 15% (vol). Measurements were also performed for ethanol and the three pure components of the model fuel at 298, 358 and 398 K. The results obtained for the studied mixtures, and for pure n-heptane, iso-octane, toluene and ethanol, have been satisfactorily simulated using a detailed kinetic mechanism.
The state of the art for the access to thick samples by photopolymerization processes as well as some perspectives are provided.
To better understand the thermal decomposition of polycyclanes, the pyrolysis of tricyclodecane has been studied in a jet-stirred reactor at temperatures from 848 to 933 K, for residence times between 0.5 and 6 s and at atmospheric pressure, corresponding to a conversion between 0.01% and 25%. The main products of the reaction are hydrogen, methane, ethylene, ethane, propene, 1,3-cyclopentadiene, cyclopentene, benzene, 1,5-hexadiene, toluene, and 3-cyclopentylcyclopentene. A primary mechanism containing all the possible initiation steps, including those involving diradicals, as well as propagation reactions has been developed and allows experimental results to be satisfactorily modeled. The main reaction pathways of consumption of tricyclodecane and of formation of the main products have been derived from flow rate and sensitivity analyses.
Context. While the existence of more than 1800 exoplanets have been confirmed, there is evidence of a wide variety of elemental chemical composition, that is to say different metallicities and C/N/O/H ratios. Atmospheres with a high C/O ratio (above 1) are expected to contain a high quantity of hydrocarbons, including heavy molecules (with more than two carbon atoms). To correctly study these C-rich atmospheres, a chemical scheme adapted to this composition is necessary. Aims. We have implemented a chemical scheme that can describe the kinetics of species with up to six carbon atoms (C 0 -C 6 scheme). This chemical scheme has been developed with combustion specialists and validated by experiments that were conducted on a wide range of temperatures (300−2500 K) and pressures (0.01−100 bar). Methods. To determine for which type of studies this enhanced chemical scheme is mandatory, we created a grid of 12 models to explore different thermal profiles and C/O ratios. For each of them, we compared the chemical composition determined with a C 0 -C 2 chemical scheme (species with up to two carbon atoms) and with the C 0 -C 6 scheme. We also computed synthetic spectra corresponding to these 12 models. Results. We found no difference in the results obtained with the two schemes when photolyses were excluded from the model, regardless of the temperature of the atmosphere. In contrast, differences can appear in the upper atmosphere (P >∼ 1−10 mbar) when there is photochemistry. These differences are found for all the tested pressure-temperature profiles if the C/O ratio is above 1. When the C/O ratio of the atmosphere is solar, differences are only found at temperatures lower than 1000 K. The differences linked to the use of different chemical schemes have no strong influence on the synthetic spectra. However, with this study, we have confirmed C 2 H 2 and HCN as possible tracers of warm C-rich atmospheres. Conclusions. The use of this new chemical scheme (instead of the C 0 -C 2 ) is mandatory for modelling atmospheres with a high C/O ratio and, in particular, for studying the photochemistry in detail. If the focus is on the synthetic spectra, a smaller scheme may be sufficient, because it will be faster in terms of computation time.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers