HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Objective: Extensive research using water-diffusion MRI reported age-related modifications of cerebral White Matter (WM). Moreover, water-diffusion parameter modifications have been frequently associated with cognitive performances in the elderly sample, reinforcing the idea of aging inducing microstructural disconnection of the brain which in turn impacts cognition. However, only few studies really assessed overtime modifications of these parameters and their relationship with episodic memory outcome of elderly. Materials and Methods: One-hundred and thirty elderly subjects without dementia (74.1 ± 4.1 years; 47% female) were included in this study. Diffusion tensor imaging (DTI) was performed at two-time points (3.49 ± 0.68 years apart), allowing the assessment of changes in water-diffusion parameters over time using a specific longitudinal pipeline. White matter hyperintensity (WMH) burden and gray matter (GM) atrophy were also measured on FLAIR and T1-weighted sequences collected during these two MRI sessions. Free and cued verbal recall scores assessed at the last follow-up of the cohort were used as episodic memory outcome. Changes in water-diffusion parameters over time were included in serial linear regression models to predict retrieval or storage ability of elderly. Results: GM atrophy and an increase in mean diffusivity (MD) and WMH load between the two-time points were observed. The increase in MD was significantly correlated with WMH load and the different memory scores. In models accounting for the baseline cognitive score, GM atrophy, or WMH load, MD changes still significantly predict free verbal recall, and not total verbal recall, suggesting the specific association with the retrieval deficit in healthy aging. Conclusion: In elderly, microstructural WM changes are good predictors of lower free verbal recall performances. Moreover, this contribution is not only driven by WMH load
The diffusion-weighted-dependent attenuation of the MRI signal E(b) is extremely sensitive to microstructural features. The aim of this study was to determine which mathematical model of the E(b) signal most accurately describes it in the brain. The models compared were the monoexponential model, the stretched exponential model, the truncated cumulant expansion (TCE) model, the biexponential model, and the triexponential model. Acquisition was performed with nine b-values up to 2500 s/mm2 in 12 healthy volunteers. The goodness-of-fit was studied with F-tests and with the Akaike information criterion. Tissue contrasts were differentiated with a multiple comparison corrected nonparametric analysis of variance. F-test showed that the TCE model was better than the biexponential model in gray and white matter. Corrected Akaike information criterion showed that the TCE model has the best accuracy and produced the most reliable contrasts in white matter among all models studied. In conclusion, the TCE model was found to be the best model to infer the microstructural properties of brain tissue.
Several studies have highlighted the value of diffusion tensor imaging (DTI) with strong diffusion weighting to reveal white matter microstructural lesions, but data in gray matter (GM) remains scarce. Herein, the effects of b-values combined with different numbers of diffusion-encoding directions (NDIRs) on DTI metrics to capture the normal hippocampal microstructure and its early alterations were investigated in a mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis [EAE]). Two initial DTI datasets (B2700-43Dir acquired with b = 2700 s.mm−2 and NDIR = 43; B1000-22Dir acquired with b = 1000 s.mm−2 and NDIR = 22) were collected from 18 normal and 18 EAE mice at 4.7 T. Three additional datasets (B2700-22Dir, B2700-12Dir and B1000-12Dir) were extracted from the initial datasets. In healthy mice, we found a significant influence of b-values and NDIR on all DTI metrics. Confronting unsupervised hippocampal layers classification to the true anatomical classification highlighted the remarkable discrimination of the molecular layer with B2700-43Dir compared with the other datasets. Only DTI from the B2700 datasets captured the dendritic loss occurring in the molecular layer of EAE mice. Our findings stress the needs for both high b-values and sufficient NDIR to achieve a GM DTI with more biologically meaningful correlations, though DTI-metrics should be interpreted with caution in these settings.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.