Commonly used for Parkinson’s disease (PD), deep brain stimulation (DBS) produces marked clinical benefits when optimized. However, assessing the large number of possible stimulation settings (i.e., programming) requires numerous clinic visits. Here, we examine whether functional magnetic resonance imaging (fMRI) can be used to predict optimal stimulation settings for individual patients. We analyze 3 T fMRI data prospectively acquired as part of an observational trial in 67 PD patients using optimal and non-optimal stimulation settings. Clinically optimal stimulation produces a characteristic fMRI brain response pattern marked by preferential engagement of the motor circuit. Then, we build a machine learning model predicting optimal vs. non-optimal settings using the fMRI patterns of 39 PD patients with a priori clinically optimized DBS (88% accuracy). The model predicts optimal stimulation settings in unseen datasets: a priori clinically optimized and stimulation-naïve PD patients. We propose that fMRI brain responses to DBS stimulation in PD patients could represent an objective biomarker of clinical response. Upon further validation with additional studies, these findings may open the door to functional imaging-assisted DBS programming.
Objective
To foster trial‐readiness of coenzyme Q8A (COQ8A)‐ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A‐ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10).
Methods
Cross‐modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype–phenotype correlations, 3D‐protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data.
Results
Fifty‐nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A‐ataxia presented as variable multisystemic, early‐onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss‐of‐function variants (82–93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross‐sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild‐to‐moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: −0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%.
Interpretation
This study provides a deeper understanding of the disease, and paves the way toward large‐scale natural history studies and treatment trials in COQ8A‐ataxia. ANN NEUROL 2020;88:251–263
Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (ntotal = 482 patients; nParkinson disease = 303; ndystonia = 64; ntremor = 39; ntreatment‐resistant depression/anorexia nervosa = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high‐resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above‐mean and below‐mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient‐specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426–443
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant disorder caused by an ATTCT repeat intronic expansion in the SCA10 gene. SCA 10 has been reported in Mexican, Brazilian, Argentinean and Venezuelan families. Its phenotype is overall characterized by cerebellar ataxia and epilepsy. Interestingly, Brazilian patients reported so far showed pure cerebellar ataxia, without epilepsy. Here, authors provide a systematic analysis of the presence, frequency and electroencephalographic presentation of epilepsy among 80 SCA10 patients from 10 Brazilian families. Overall, the frequency of epilepsy was considered rare, been found in 3.75 % of the cases while this finding in populations from other geographic areas reaches 60% of SCA10 cases.
Introduction
Nonmotor symptoms (NMS) have been described in several neurodegenerative diseases but have not been systematically evaluated in spinocerebellar ataxia type 10 (SCA10).
Objective
To compare the frequency of NMS in patients with SCA10, Machado-Joseph disease (MJD) and healthy controls.
Methods
Twenty-eight SCA10, 28 MJD and 28 healthy subjects were prospectively assessed using validated screening tools for chronic pain, autonomic symptoms, fatigue, sleep disturbances, psychiatric disorders, and cognitive function.
Results
Chronic pain was present with similar prevalence among SCA10 patients and healthy controls, but was more frequent in MJD. Similarly, autonomic symptoms were found in SCA10 in the same proportion of healthy individuals, while the MJD group had higher frequencies. Restless legs syndrome and REM sleep behavior disorder were uncommon in SCA10. The mean scores of excessive daytime sleepiness were worse in SCA10 group. Scores of fatigue were higher in the SCA10 sample compared to healthy individuals, but better than in the MJD. Psychiatric disorders were generally more prevalent in both spinocerebellar ataxias than among healthy controls. The cognitive performance of healthy controls was better compared with SCA10 patients and MJD, which showed the worst scores.
Conclusions
Although NMS were present among SCA10 patients in a higher proportion compared to healthy controls, they were more frequent and severe in MJD. In spite of these comparisons, we were able to identify NMS with significant functional impact in patients with SCA10, indicating the need for their systematic screening aiming at optimal treatment and improvement in quality of life.
Background Background: Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD), and careful selection of candidates is a key component of successful therapy. Although it is recognized that factors such as age, disease duration, and levodopa responsiveness can influence outcomes, it is unclear whether genetic background should also serve as a parameter. Objectives Objectives: The aim of this systematic review is to explore studies that have evaluated DBS in patients with mutations in PD-related genes. Methods Methods: We performed a selective literature search for articles regarding the effects of DBS in autosomal dominant or recessive forms of PD or in PD patients with genetic risk factors. Data regarding changes in motor and nonmotor scores and the presence of adverse events after the stimulation were collected.
ResultsResults: A total of 25 studies were included in the systematic review, comprising 135 patients. In the shorter term, most patients showed marked or satisfactory response to subthalamic DBS, although leucine rich repeat kinase 2 carriers of R114G mutations had higher rates of unsatisfactory outcome. Longer term follow-up data were scarce but suggested that motor benefit is sustained. Patients with the glucosidase beta acid (GBA) mutation showed higher rates of cognitive decline after surgery. Motor outcome was scarce for pallidal DBS. Few adverse events were reported. Conclusions Conclusions: Subthalamic DBS results in positive outcomes in the short term in patients with Parkin, GBA, and leucine-rich repeat kinase 2 (non-R144G) mutations, although the small sample size limits the interpretation of our findings. Longer and larger cohorts of follow-up, with broader nonmotor symptom evaluations will be necessary to better customize DBS therapy in this population.
Background
Disorders related to dysfunction of coenzyme (CoQ10) metabolism, including AarF domain containing kinase 3 gene (ADCK3) mutations, have received attention due to the potential for response to CoQ10 supplementation.
Methods
We describe two new cases of neurological syndromes due to ADCK3 mutations that obtained striking benefit from CoQ10, and a third who did not. We also review 20 cases from the literature in which responses to CoQ10 were documented out of all 38 previously reported cases.
Results
Despite the remarkable responses in some cases with ataxia and movement disorders (myoclonus, dystonia, tremor), overall, we were not able to identify variables that predicted response to CoQ10 supplementation.
Conclusions
Based on our experience and data from the literature, we recommend a minimum of 10 mg/kg/day of ubiquinone with titration up to 15 mg/kg/day, maintained at least for 6 months in order to obtain or exclude potential benefit from therapy.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.