The subdivision of the geographic distribution of H. stigonocarpa populations into three genetically differentiated groups can be associated with Quaternary climatic changes. The data suggest that during glacial times H. stigonocarpa populations became extinct in most parts of the southern present-day cerrado area. Milder climatic conditions in the north and eastern portions of the cerrado resulted in maintenance of populations in these regions. Thus it is inferred that the most southern part of the present-day cerrado was re-colonized by different lineages from northern parts of this biome, after postglacial climate amelioration.
Little is known about past vegetation dynamics in Eastern Tropical South America (ETSA). Here we describe patterns of chloroplast (cp) DNA variation in Plathymenia reticulata, a widespread tree in the ETSA Atlantic Forest and Cerrado biomes, but not found in the xeromorphic Caatinga. Forty one populations, comprising 220 individuals, were analysed by sequencing the trnS-trnG and trnL-trnL-trnF cpDNA regions. Combined, they resulted in 18 geographically structured haplotypes. The central region of the sampling area, comprising Minas Gerais and Goiás Brazilian states, is a centre of genetic diversity and probably the most longstanding area of the distribution range of the species. In contrast, populations from northeastern Brazil and the southern Cerrados showed very low diversity levels, almost exclusively with common haplotypes which are also found in the central region. Coupled with a long-branched star-like network, these patterns suggest a recent range expansion of P. reticulata to those regions from central region sources. The recent origin of the species (in the early Pleistocene) or the extinction of some populations due to drier and cooler climate during the last glacial maximum could have been responsible for that phylogeographic pattern. The populations from northeastern Brazil originated from two colonization routes, one eastern (Atlantic) and one western (inland). Due to its high diversity and complex landscape, the central region, especially central-north Minas Gerais (between 15 degrees -18 degrees S and 42 degrees -46 degrees W), should be given the highest priority for conservation.
Few studies have addressed the phylogeography of species of the Cerrado, the largest savanna biome of South America. Here we aimed to investigate the phylogeographical structure of Dalbergia miscolobium, a widespread tree from the Cerrado, and to verify its concordance with plant phylogeographical and biogeographical patterns so far described. A total of 287 individuals from 32 populations were analyzed by sequencing the trnL intron of the chloroplast DNA and the internal transcribed spacer of the nuclear ribosomal DNA. Analysis of population structure and tests of population expansion were performed and the time of divergence of haplotypes was estimated. Twelve and 27 haplotypes were identified in the cpDNA and nrDNA data, respectively. The star-like network configuration and the mismatch distributions indicated a recent spatial and demographic expansion of the species. Consistent with previous tree phylogeographical studies of Cerrado trees, the cpDNA also suggested a recent expansion towards the southern Cerrado. The diversity of D. miscolobium was widespread but high levels of genetic diversity were found in the Central Eastern and in the southern portion of Central Western Cerrado. The combined analysis of cpDNA and nrDNA supported a phylogeographic structure into seven groups. The phylogeographical pattern showed many concordances with biogeographical and phylogeographical studies in the Cerrado, mainly with the Cerrado phytogeographic provinces superimposed to our sampling area. The data reinforced the uniqueness of Northeastern and Southeastern Cerrados and the differentiation between Eastern and Western Central Cerrados. The recent diversification of the species (estimated between the Pliocene and the Pleistocene) and the ‘genealogical concordances’ suggest that a shared and persistent pattern of species diversification might have been present in the Cerrado over time. This is the first time that an extensive ‘genealogical concordance’ between phylogeographic and phytogeographic patterns is shown for the Cerrado biome.
The evaluated populations displayed mean levels of genetic variation intermediate to those expected for narrow and widespread species. The results suggest that fragments with similar area and geographical distance from a large protected reserve can exhibit different levels of genetic variation, depending on the degree of anthropogenic disturbance. The considerable genetic variation in the protected fragment points to the importance of adequate conservation of small fragments for the preservation of genetic variation in D. nigra.
Phylogenetic relationships among the genera Dalbergia, Machaerium, and Aeschynomene were investigated with sequences from both the chloroplast DNA trnL intron and the nuclear ribosomal DNA ITS/5.8S region. A parsimony and Bayesian analysis of individual and combined data resolved a monophyletic Dalbergia that is sister to a clade comprising Aeschynomene sect. Ochopodium and Machaerium. Aeschynomene sect. Aeschynomene is paraphyletic with respect to genera such as Bryaspsis and Soemmeringia, which collectively are sister to the Dalbergia-Machaerium-Ochopodium clade. This study identifies the disparate lineages of the genus Aeschynomene and reveals that species with basifixed stipules (i.e., sect. Ochopodium) perhaps should be ranked as a distinct genus. Species of Ochopodium have the general lomented fruit morphology in contrast to the unique indehiscent samara fruits of Machaerium. The findings of this analysis also have some bearing at the infrageneric level. Limited sampling of Dalbergia sects. Triptolemea and Ecastaphyllum resolves them as monophyletic. In contrast, the traditional infrageneric classification of Machaerium does not show much agreement with molecular groups. Additional sampling of Aeschynomene and Machaerium species, other DNA sequences, and morphological data are needed to resolve the exact relationship of sect. Ochopodium to Machaerium, as well as validate the infrageneric classification of Machaerium.
Senna multijuga and Plathymenia reticulata are tropical tree species native to the Brazilian Atlantic Forest and the Brazilian Cerrado, respectively. Seed-coat dormancy variation was evaluated within and among natural populations of these two species. Scarified and non-scarified seeds from different plants within populations were germinated at 28°C, and the percentage of germinated seeds was estimated for both species. Mean germination percentages of non-scarified seeds tended to be higher for P. reticulata populations (40 and 62%) than for S. multijuga populations (9 and 35%). After scarification, germination percentages increased significantly in both species, with all populations showing mean values above 84%. The level of seed dormancy, evaluated through the experiment with non-scarified seeds, differed significantly within and among populations of both species (P < 0.05). The values of the coefficient of genotypic determination were high for populations of both species (b = 0.85). Although this coefficient is an overestimation, since it includes non-genetic maternal effects, its high values suggest that a considerable part of the phenotypic variation in seed dormancy in S. multijuga and P. reticulata is of genetic origin. Variation in seed dormancy can be an important factor for increasing genetic diversity in populations of these species, making them able to respond to environmental changes.
Senna multijuga is a pioneer tropical tree species that occurs mainly in the Brazilian Atlantic forest. We investigated the mating system of two populations of S. multijuga, one located in a reserve area (RD1) and the other (RD2) about 15 km away. The mating system parameters were estimated using the mixed mating model (software MLTR). The two populations had significantly different outcrossing rates, with population RD2 having a high rate (t m = 0.838) and population RD1, a lower rate (t m = 0.540). The values of t s were different between the two populations and also lower than those of t m . Significant t m -t s estimates indicated that biparental inbreeding contributed to the apparent selfing rate in these populations. The correlation of paternity was significant in population RD2 (r p = 0.309), suggesting that the progeny were more closely related than inferred by the observed outcrossing rate. The estimates of correlation of paternity, biparental inbreeding and the significant differences in pollen and ovule allele frequencies indicated that population RD2 is genetically substructured. For a pioneer species such as S. multijuga, selfing can be an important strategy for occupying open areas.
The Atlantic Forest is one of the most diverse ecosystems in the world and considered a hotspot of biodiversity conservation. Dalbergia nigra (Fabaceae) is a tree endemic to the Brazilian Atlantic Forest, and has become threatened due to overexploitation of its valuable timber. In the present study, we analyzed the genetic diversity and fine-scale spatial genetic structure of D. nigra in an area of primary forest of a large reserve. All adult individuals (N = 112) were sampled in a 9.3 ha plot, and genotyped for microsatellite loci. Our results indicated high diversity with a mean of 8.6 alleles per locus, and expected heterozygosity equal to 0.74. The co-ancestry coefficients were significant for distances among trees up to 80 m. The Sp value was equal to 0.017 and indirect estimates of gene dispersal distances ranged from 89 to 144 m. No strong evidence of bottleneck or effects of human-disturbance was found. This study highlights that long-term efforts to protect a large area of Atlantic Forest have been effective towards maintaining the genetic diversity of D. nigra. The results of this study are important towards providing a guide for seed collection for ex-situ conservation and reforestation programmes of this threatened species.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.