Native cephalic vein remains the superior dialysis conduit, even thirty years after it was first described. However, up to 37% of hemodialysis patients develop progressive stenosis in the venous circuit of arterio-venous fistula (AVF), which may later cause thrombosis and occlusion. To study the pre-existing morphological changes in the wall of the cephalic vein before AVF construction, we collected 23 cephalic vein specimens from 3 normal, young trauma and twenty renal failure patients. The samples were collected at the time of vascular repair in the first group and AVF construction in the second group. Sections were prepared and stained for both light and transmission electron microscopy (TEM) examination. Compared with normal cephalic vein, all pre-access cephalic veins showed thickening of the wall and intimal hyperplasia. Other changes were loss of internal elastic lamina in 9 (45%) patients, loss of endothelial cell layer in 6 (30%), inflammatory cell infiltration of the wall in 5 (25%), mural calcification in 3 (15%) and telangiectasia in 2 (10%). Other ultrastructural changes observed were intimal hypertrophy, degeneration and loss of the endothelial cells, degeneration and fraying of smooth muscle cells (SMCs) and loss of wall components into the lumen. In conclusion, most of the apparently normal cephalic veins of renal failure patients showed morphological abnormalities at the time of AVF construction, which may well influence the outcome of shunts in terms of future stenosis and failure. It seems likely that the later development of AVF stenosis may be the result of pre-existing disease rather than the direct insult of arterialization.
The repeated chemotherapy of schistosomiasis has resulted in the emergence of drug-resistant schistosome strains. The development of such resistance has drawn the attention of many authors to alternative drugs. Many medicinal plants were studied to investigate their antischistosomal potency. The present work aimed to evaluate antischistosomal activity of crude aqueous extract of ginger against Schistosoma mansoni. Sixteen mice of C57 strain were exposed to 100 ± 10 cercariae per mouse by the tail immersion method; the mice were divided into two groups: untreated group and ginger-treated one. All mice were sacrificed at the end of 10th week post-infection. Worm recovery and egg counting in the hepatic tissues and faeces were determined. Surface topography of the recovered worms was studied by scanning electron microscopy. Histopathological examination of liver and intestine was done using routine histological procedures. The worm burden and the egg density in liver and faeces of mice treated with ginger were fewer than in non-treated ones. Scanning electron microscopical examination revealed that male worms recovered from mice treated with ginger lost their normal surface architecture, since its surface showed partial loss of tubercles' spines, extensive erosion in inter-tubercle tegumental regions and numerous small blebs around tubercles. Histopathological data indicated a reduction in the number and size of granulomatous inflammatory infiltrations in the liver and intestine of treated mice compared to non-treated mice. The results of the present work suggested that ginger has antischistosomal activities and provided a basis for subsequent experimental and clinical trials.
The molecular mechanisms through which ghrelin exerts its cardioprotective effects during cardiac remodeling post-myocardial infarction (MI) are poorly understood. The aim of this study was to investigate whether the cardioprotection mechanisms are mediated by modulation of JAK/STAT signaling and what triggers this modulation. Rats were divided into six groups (n = 12/group): control, sham, sham + ghrelin (100 µg/kg, s.c., daily, starting 1 day post-MI), MI, MI+ ghrelin, and MI+ ghrelin+ AG490, a potent JAK2 inhibitor (5 mg/kg, i.p., daily). All treatments were administered for 3 weeks. Administration of ghrelin to MI rats improved left ventricle (LV) architecture and restored cardiac contraction. In remote non-infarcted areas of MI rats, ghrelin reduced cardiac inflammation and lipid peroxidation and enhanced antioxidant enzymatic activity. In addition, independent of the growth factor/insulin growth factor-1 (GF/IGF-1) axis, ghrelin significantly increased the phosphorylation of JAK2 and Tyr702 and Ser727 residues of STAT3 and inhibited the phosphorylation of JAK1 and Tyr701 and Ser727 residues of STAT1, simultaneously increasing the expression of BCL-2 and decreasing in the expression of BAX, cleaved CASP3, and FAS. This effect coincided with decreased expression of SOCS3. All these beneficial effects of ghrelin, except its inhibitory action on IL-6 expression, were partially and significantly abolished by the co-administration of AG490. In conclusion, the cardioprotective effect of ghrelin against MI-induced LV injury is exerted via activation of JAK2/STAT3 signaling and inhibition of STAT1 signaling. These effects were independent of the GF/IGF-1 axis and could be partially mediated via inhibition of cardiac IL-6.
Moraxella catarrhalis (M. catarrhalis) is a Gram-negative bacterium that can cause serious respiratory tract infections and middle ear infections in children and adults. M. catarrhalis has demonstrated an increasing rate of antibiotic resistance in the last few years, thus development of an effective vaccine is a major health priority. We report here a novel designed multitope vaccine based on the mapped epitopes of the vaccine candidates filtered out of the whole proteome of M. catarrhalis. After analysis of 1615 proteins using a reverse vaccinology approach, only two proteins (outer membrane protein assembly factor BamA and LPS assembly protein LptD) were nominated as potential vaccine candidates. These proteins were found to be essential, outer membrane, virulent and non-human homologs with appropriate molecular weight and high antigenicity score. For each protein, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell lymphocyte (BCL) epitopes were predicted and confirmed to be highly antigenic and cover conserved regions of the proteins. The mapped epitopes constituted the base of the designed multitope vaccine where suitable linkers were added to conjugate them. Additionally, beta defensin adjuvant and pan-HLA DR-binding epitope (PADRE) peptide were also incorporated into the construct to improve the stimulated immune response. The constructed multitope vaccine was analyzed for its physicochemical, structural and immunological characteristics and it was found to be antigenic, soluble, stable, non-allergenic and have a high affinity to its target receptor. Although the in silico analysis of the current study revealed that the designed multitope vaccine has the ability to trigger a specific immune response against M. catarrhalis, additional translational research is required to confirm the effectiveness of the designed vaccine.
In order to understand the pathology of varicose veins, we prospectively collected a total of 23 vein specimens both from the normal proximal thigh long saphenous vein (LSV) in 3 young trauma patients and from the unstripped proximal LSV near the sapheno-femoral junction and the distal calf blowouts in 10 primary varicose veins patients. Ultra-thin sections were examined under the transmission electron microscope (TEM). Compared with the normal control LSV, varicose vein sections showed increase in the diameter of the lumen, hypertrophy of the wall and elongation and invagination of the intima. Smooth muscle cells (SMCS) lost their normal fusiform shape and were widely separated by increased amounts of extra-cellular collagen fibers. The cells underwent marked degeneration, vacuolization and disintegration into fiber-like material and small separated fragments. SMCs were seen in the subintimal tissue and some of them were lost into tile lumen. SMCs also showed marked phagocytic activity, engulfing not only collagen and elastic fibers, but also other smooth muscle cells. Although these changes were more marked and advanced in the distal calf blowouts, they were also present in the proximal, clinically non-dilated LSV. In conclusion, SMCs of varicose veins show severe degeneration in both the distal calf blowouts and the proximal, clinically non-varicose LSV. It appears that they both form and phagocytose collagen and elastic fibers and play a major role in the pathogenesis of varicose veins.
Nipah virus is one of the most harmful emerging viruses with deadly effects on both humans and animals. Because of the severe outbreaks, in 2018, the World Health Organization focused on the urgent need for the development of effective solutions against the virus. However, up to date, there is no effective vaccine against the Nipah virus in the market. In the current study, the complete proteome of the Nipah virus (nine proteins) was analyzed for the antigenicity score and the virulence role of each protein, where we came up with fusion glycoprotein (F), glycoprotein (G), protein (V), and protein (W) as the candidates for epitope prediction. Following that, the multitope vaccine was designed based on top-ranking CTL, HTL, and BCL epitopes from the selected proteins. We used suitable linkers, adjuvant, and PADRE peptides to finalize the constructed vaccine, which was analyzed for its physicochemical features, antigenicity, toxicity, allergenicity, and solubility. The designed vaccine passed these assessments through computational analysis and, as a final step, we ran a docking analysis between the designed vaccine and TLR-3 and validated the docked complex through molecular dynamics simulation, which estimated a strong binding and supported the nomination of the designed vaccine as a putative solution for Nipah virus. Here, we describe the computational approach for design and analysis of this vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.