▪ Abstract Ecologists and evolutionary biologists are broadly interested in how the interactions among organisms influence their abundance, distribution, phenotypes, and genotypic composition. Recently, we have seen a growing appreciation of how multispecies interactions can act synergistically or antagonistically to alter the ecological and evolutionary outcomes of interactions in ways that differ fundamentally from outcomes predicted by pairwise interactions. Here, we review the evidence for criteria identified to detect community-based, diffuse coevolution. These criteria include (a) the presence of genetic correlations between traits involved in multiple interactions, (b) interactions with one species that alter the likelihood or intensity of interactions with other species, and (c) nonadditive combined effects of multiple interactors. In addition, we review the evidence that multispecies interactions have demographic consequences for populations, as well as evolutionary consequences. Finally, we explore the experimental and analytical techniques, and their limitations, used in the study of multispecies interactions. Throughout, we discuss areas in particular need of future research.
Plants interact with many visitors who consume a variety of plant tissues. While the consequences of herbivory to leaves and shoots are well known, the implications of florivory, the consumption of flowers prior to seed coat formation, have received less attention. Herbivory and florivory can yield different plant, population and community outcomes; thus, it is critical to distinguish between these two types of consumption. Here, we consider the ecological and evolutionary consequences of florivory. A growing number of studies recognize that florivory is common in natural systems and in some cases surpasses leaf herbivory in magnitude and impact. Florivores can affect male and female plant fitness via direct trophic effects and through altered pathways of species interactions. In particular, florivory can affect pollination and have consequences for plant mating and floral sexual system evolution. Plants are not defenceless against florivore damage. Concepts of resistance and tolerance can be applied to plant-florivore interactions. Moreover, extant theories of plant chemical defence, including optimal defence theory, growth rate hypothesis and growth differentiation-balance hypothesis, can be used to make testable predictions about when and how plants should defend flowers against florivores. The majority of the predictions remain untested, but they provide a theoretical foundation on which to base future experiments. The approaches to studying florivory that we outline may yield novel insights into floral and defence traits not illuminated by studies of pollination or herbivory alone.
Not all floral visitors attracted to flowers are pollinators. Instead, some visitors circumvent the floral opening, usually removing nectar without contacting the anthers and/or stigma. Here we review the evolutionary ecology of nectar robbing from both the plant and animal perspective. Effects of robbing on female and male components of plant reproduction range from negative to positive. Their underlying mechanisms are diverse, including direct effects and indirect effects mediated through changes in pollination. We detail how plants may be able to deter robbers through morphological and chemical traits. For the evolutionary ecology of robbing to move beyond a phytocentric perspective, studies must also address the causes of robbing and the consequences for both robbers and pollinators. We use an energetics approach to evaluate these causes and consequences. Finally, we highlight unanswered questions in need of further research.
The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities.
Abstract. The nectar of many plant species contains defensive compounds that have been hypothesized to benefit plants through a variety of mechanisms. However, the relationship between nectar defenses and plant fitness has not been established for any species. We experimentally manipulated gelsemine, the principal alkaloid of Carolina jessamine (Gelsemium sempervirens), in nectar to determine its effect on pollinator visitation, nectar robber visitation, and male and female plant reproduction. We found that nectar robbers and most pollinators probed fewer flowers and spent less time per flower on plants with high compared to low nectar alkaloids. High alkaloids decreased the donation of fluorescent dye, an analogue of pollen used to estimate male plant reproduction, to neighboring plants by one-third to one-half. However, nectar alkaloids did not affect female plant reproduction, measured as pollen receipt, fruit set, seed set, and seed mass. The weak effects of nectar alkaloids on female reproduction could represent a balance between the altered behavior of nectar robbers and pollinators, or it could be that neither of these interactions affected plant reproduction. Taken together, these results suggest that secondary compounds in nectar may have more costs than benefits for plants.
Hummingbirds foraging in alpine meadows of central Colorado, United States, face a heterogeneous distribution of nectar rewards. This study investigated how variability in nectar resources caused by nectar-robbing bumblebees affected the foraging behavior of hummingbird pollinators and, subsequently, the reproductive success of a host plant (Ipomopsis aggregata). We presented hummingbirds with experimental arrays of I. aggregata and measured hummingbird foraging behavior as a function of known levels of nectar robbing. Hummingbirds visited significantly fewer plants with heavy nectar robbing (over 80% of available flowers robbed) and visited fewer flowers on those plants. These changes in hummingbird foraging behavior resulted in decreased percent fruit set as well as decreased total seed set in heavily robbed plants. These results indicate that hummingbird avoidance of nectar-robbed plants and flowers reduces plant fitness components. In addition, our results suggest that the mutualisms between pollinators and host plants may be affected by other species, such as nectar robbers.
Pollination by animals is critical to sexual reproduction of most angiosperms. However, little is known about variation in pollination service to single plant species. We report results of a long‐term study of Ipomopsis aggregata, a semelparous montane herb whose flowers are visited by hummingbird and insect pollinators as well as “floral larcenists.” We censused flower visitors over seven summers at permanent study sites separated by several hundred meters, and counted pollen delivered to flowers on a subset of plants observed for visitation. The species composition of the community of visitors varied significantly across years and within the flowering season; sites varied significantly only in the magnitude of parallel annual changes in the visitor community. Rates of flower visitation fluctuated over an order of magnitude or more. Variation in mean stigma pollen load among plants flowering in the same site and year was explained by a causal path model in which visitation rates by pollinators and larcenists had linear positive and negative effects, respectively. A simplified model including only pollinators explained almost as much variance as did the full model. However, qualitatively different parameter estimates were produced by an analogous causal model based on population means across site–year combinations. Discrepant results from within‐ and between‐population levels of analysis suggest that pollen receipt is influenced by environmental factors that vary among sites and years, as well as by pollinator visit rates. We present a heuristic causal model that includes such factors, and we note its implications for ecological and evolutionary studies of pollination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.