BackgroundIn this paper, a novel functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI) framework for control of prosthetic legs and rehabilitation of patients suffering from locomotive disorders is presented.MethodsfNIRS signals are used to initiate and stop the gait cycle, while a nonlinear proportional derivative computed torque controller (PD-CTC) with gravity compensation is used to control the torques of hip and knee joints for minimization of position error. In the present study, the brain signals of walking intention and rest tasks were acquired from the left hemisphere’s primary motor cortex for nine subjects. Thereafter, for removal of motion artifacts and physiological noises, the performances of six different filters (i.e. Kalman, Wiener, Gaussian, hemodynamic response filter (hrf), Band-pass, finite impulse response) were evaluated. Then, six different features were extracted from oxygenated hemoglobin signals, and their different combinations were used for classification. Also, the classification performances of five different classifiers (i.e. k-Nearest Neighbour, quadratic discriminant analysis, linear discriminant analysis (LDA), Naïve Bayes, support vector machine (SVM)) were tested.ResultsThe classification accuracies obtained from SVM using the hrf were significantly higher (p < 0.01) than those of the other classifier/ filter combinations. Those accuracies were 77.5, 72.5, 68.3, 74.2, 73.3, 80.8, 65, 76.7, and 86.7% for the nine subjects, respectively.ConclusionThe control commands generated using the classifiers initiated and stopped the gait cycle of the prosthetic leg, the knee and hip torques of which were controlled using the PD-CTC to minimize the position error. The proposed scheme can be effectively used for neurofeedback training and rehabilitation of lower-limb amputees and paralyzed patients.
Objective. In this paper, a novel methodology for feature extraction to enhance classification accuracy of functional near-infrared spectroscopy (fNIRS)-based two-class and three-class brain–computer interface (BCI) is presented. Approach. Novel features are extracted using vector-based phase analysis method. Changes in oxygenated Δ H b O and de-oxygenated ( Δ H b R ) haemoglobin are used to calculate four novel features: change in cerebral blood volume ( Δ C B V ), change in cerebral oxygen exchange ( Δ C O E ), vector magnitude (|L|) and angle (k). Δ C B V is the sum and Δ C O E is difference of Δ H b O and Δ H b R , whereas |L| is magnitude and k is angle of vector. fNIRS signals of seven healthy subjects, corresponding to left-hand index finger tapping (LFT), right-hand index finger tapping (RFT) and rest are acquired from motor cortex using multi-channel continuous-wave imaging system. After removing physiological and instrumental noises from the acquired signals, the four novel features are calculated. For validation, conventional temporal, spatial and spatiotemporal features; mean, peak, slope, variance, kurtosis and skewness are also calculated using Δ H b O and Δ H b R . All possible two-feature and three-feature combinations of the novel and conventional features are then used to classify two-class (LFT vs RFT) and three-class (LFT vs RFT vs rest) fNIRS-BCI using linear discriminant analysis. Main results. Results demonstrate that combination of four novel features yields significantly higher average classification accuracies of 98.7 ± 1.0% and 85.4 ± 1.4% as compared to 68.7 ± 6.9% and 53.6 ± 10.6% using conventional features for two-class and three-class problem, respectively. Validation of proposed method on an open access database containing RFT, LFT and dominant side foot tapping tasks for 30 subjects also shows improvement in average classification accuracies for two-class and three-class fNIRS-BCIs. Significance. This study provides a step forward in improving the classification accuracies of state-of-the-art fNIRS-BCIs by showing significant improvement in classification accuracies of two-class and three-class fNIRS-BCIs using novel features extracted by vector-based phase analysis.
In this paper, a novel methodology for enhanced classification of functional near-infrared spectroscopy (fNIRS) signals utilizable in a two-class [motor imagery (MI) and rest; mental rotation (MR) and rest] brain–computer interface (BCI) is presented. First, fNIRS signals corresponding to MI and MR are acquired from the motor and prefrontal cortex, respectively, afterward, filtered to remove physiological noises. Then, the signals are modeled using the general linear model, the coefficients of which are adaptively estimated using the least squares technique. Subsequently, multiple feature combinations of estimated coefficients were used for classification. The best classification accuracies achieved for five subjects, for MI versus rest are 79.5, 83.7, 82.6, 81.4, and 84.1% whereas those for MR versus rest are 85.5, 85.2, 87.8, 83.7, and 84.8%, respectively, using support vector machine. These results are compared with the best classification accuracies obtained using the conventional hemodynamic response. By means of the proposed methodology, the average classification accuracy obtained was significantly higher (p < 0.05). These results serve to demonstrate the feasibility of developing a high-classification-performance fNIRS-BCI.
Functional near-infrared spectroscopy (fNIRS) is one of the latest noninvasive brain function measuring technique that has been used for the purpose of brain-computer interfacing (BCI). In this paper, we compare and analyze the effect of six most commonly used filtering techniques (i.e., Gaussian, Butterworth, Kalman, hemodynamic response filter (hrf), Wiener, and finite impulse response) on classification accuracies of fNIRS-BCI. To conclude with the best optimal filter for a specific cortical task owing to a specific cortical region, we divided our experimental tasks according to the three main cortical regions: prefrontal, motor, and visual cortex. Three different experiments were performed for prefrontal and motor execution tasks while one for visual stimuli. The tasks performed for prefrontal include rest (R) vs mental arithmetic (MA), R vs object rotation (OB), and OB vs MA. Similarly, for motor execution, R vs left finger tapping (LFT), R vs right finger tapping (RFT), and LFT vs RFT. Likewise, for the visual cortex, R vs visual stimuli (VS) task. These experiments were performed for ten trials with five subjects. For consistency among extracted data, six statistical features were evaluated using oxygenated hemoglobin, namely, slope, mean, peak, kurtosis, skewness, and variance. Combination of these six features was used to classify data by the nonlinear support vector machine (SVM). The classification accuracies obtained from SVM by using hrf and Gaussian were significantly higher for R vs MA, R vs OB, R vs RFT, and R vs VS and Wiener filter for OB vs MA. Similarly, for R vs LFT and LFT vs RFT, hrf was found to be significant p<0.05. These results show the feasibility of using hrf for effective removal of noises from fNIRS data.
A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel’s correlation coefficients’ maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems’ performance.
This research presents a brain–computer interface (BCI) framework for brain signal classificationusing deep learning (DL) and machine learning (ML) approaches on functional near-infrared spectroscopy (fNIRS) signals. fNIRS signals of motor execution for walking and rest tasks are acquired from the primary motor cortex in the brain’s left hemisphere for nine subjects. DL algorithms, including convolutional neural networks (CNNs), long short-term memory (LSTM), and bidirectional LSTM (Bi-LSTM) are used to achieve average classification accuracies of 88.50%, 84.24%, and 85.13%, respectively. For comparison purposes, three conventional ML algorithms, support vector machine (SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA) are also used for classification, resulting in average classification accuracies of 73.91%, 74.24%, and 65.85%, respectively. This study successfully demonstrates that the enhanced performance of fNIRS-BCI can be achieved in terms of classification accuracy using DL approaches compared to conventional ML approaches. Furthermore, the control commands generated by these classifiers can be used to initiate and stop the gait cycle of the lower limb exoskeleton for gait rehabilitation.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers