Satellite data show increasing leaf area of vegetation due to direct (human land-use management) and indirect factors (climate change, CO
2
fertilization, nitrogen deposition, recovery from natural disturbances, etc.). Among these, climate change and CO
2
fertilization effect seem to be the dominant drivers. However, recent satellite data (2000–2017) reveal a greening pattern that is strikingly prominent in China and India, and overlapping with croplands world-wide. China alone accounts for 25% of the global net increase in leaf area with only 6.6% of global vegetated area. The greening in China is from forests (42%) and croplands (32%), but in India is mostly from croplands (82%) with minor contribution from forests (4.4%). China is engineering ambitious programs to conserve and expand forests with the goal of mitigating land degradation, air pollution and climate change. Food production in China and India has increased by over 35% since 2000 mostly due to increasing harvested area through multiple cropping facilitated by fertilizer use and surface/ground-water irrigation. Our results indicate that the direct factor is a key driver of the “Greening Earth”, accounting for over a third, and likely more, of the observed net increase in green leaf area. They highlight the need for realistic representation of human land-use practices in Earth system models.
The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
Abstract:The wealth of complementary data available from remote sensing missions can hugely aid efforts towards accurately determining land use and quantifying subtle changes in land use management or intensity. This study reviewed 112 studies on fusing optical and radar data, which offer unique spectral and structural information, for land cover and use assessments. Contrary to our expectations, only 50 studies specifically addressed land use, and five assessed land use changes, while the majority addressed land cover. The advantages of fusion for land use analysis were assessed in 32 studies, and a large majority (28 studies) concluded that fusion improved results compared to using single data sources. Study sites were small, frequently 300-3000 km 2 or individual plots, with a lack of comparison of results and accuracies across sites. Although a variety of fusion techniques were used, pre-classification fusion followed by pixel-level inputs in traditional classification algorithms (e.g., Gaussian maximum likelihood classification) was common, but often without a concrete rationale on the applicability of the method to the land use theme being studied. Progress in this field of research requires the development of robust techniques of fusion to map the intricacies of land uses and changes therein and systematic procedures to assess the benefits of fusion over larger spatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.