Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases.
Alcohol synergistically enhances the progression of liver disease and the risk for liver cancer caused by hepatitis C virus (HCV). However, the molecular mechanism of this synergy remains unclear. Here, we provide the first evidence that Toll-like receptor 4 (TLR4) is induced by hepatocyte-specific transgenic (Tg) expression of the HCV nonstructural protein NS5A, and this induction mediates synergistic liver damage and tumor formation by alcohol-induced endotoxemia. We also identify Nanog, the stem/progenitor cell marker, as a novel downstream gene up-regulated by TLR4 activation and the presence of CD133/Nanog-positive cells in liver tumors of alcohol-fed NS5A Tg mice. Transplantation of p53-deficient hepatic progenitor cells transduced with TLR4 results in liver tumor development in mice following repetitive LPS injection, but concomitant transduction of Nanog shorthairpin RNA abrogates this outcome. Taken together, our study demonstrates a TLR4-dependent mechanism of synergistic liver disease by HCV and alcohol and an obligatory role for Nanog, a TLR4 downstream gene, in HCV-induced liver oncogenesis enhanced by alcohol.
Background
Hepatitis C virus (HCV) causes chronic liver disease that often leads to cirrhosis and hepatocellular carcinoma. In animal studies, chimpanzees were protected against chronic infection following experimental challenge with either homologous or heterologous HCV genotype 1a strains which predominates in the USA and Canada. We describe a first in humans clinical trial of this prophylactic HCV vaccine.
Methods
HCV E1E2 adjuvanted with MF59C.1 (an oil-in-water emulsion) was given at 3 different dosages on day 0 and weeks 4, 24 and 48 in a phase 1, placebo-controlled, dose escalation trial to healthy HCV-negative adults.
Results
There was no significant difference in the proportion of subjects reporting adverse events across the groups. Following vaccination subjects developed antibodies detectable by ELISA, CD81 neutralization and VSV/HCV pseudotype neutralization. There was no significant difference between vaccine groups in the number of responders and geometric mean titers for each of the three assays. All subjects developed lymphocyte proliferation responses to E1E2 and an inverse response to increasing amounts of antigen was noted.
Conclusions
The vaccine was safe and generally well tolerated at each of the 3 dosage levels and induced anti-body and lymphoproliferative responses. A larger study to further evaluate safety and immunogenicity is warranted.
The role of autophagy in disease pathogenesis following viral infection is beginning to be elucidated. We have previously reported that hepatitis C virus (HCV) infection in hepatocytes induces autophagy. However, the biological significance of HCV-induced autophagy has not been clarified. Autophagy has recently been identified as a novel component of the innate immune system against viral infection. In this study, we found that knockdown of autophagy-related protein beclin 1 (BCN1) or autophagy-related protein 7 (ATG7) in immortalized human hepatocytes (IHHs) inhibited HCV growth. BCN1-or ATG7-knockdown IHHs, when they were infected with HCV, exhibited increased expression of interferon-b, 2 0 ,5 0 -oligoadenylate synthetase 1, interferon-a, and interferon-a-inducible protein 27 messenger RNAs of the interferon signaling pathways in comparison with infected control IHHs. A subsequent study demonstrated that HCV infection in autophagy-impaired IHHs displayed caspase activation, poly(adenosine diphosphate ribose) polymerase cleavage, and apoptotic cell death. Conclusion: The disruption of autophagy machinery in HCV-infected hepatocytes activates the interferon signaling pathway and induces apoptosis. Together, these results suggest that HCV-induced autophagy impairs the innate immune response. (HEPATOLOGY 2011;53:406-414)
Our previous results have suggested that the putative core protein of hepatitis C virus (HCV) transcriptionally regulates cellular and viral genes, inhibits cisplatin and c-myc-mediated apoptotic cell death under certain conditions, and transforms primary rat embryo fibroblast cells with a cooperative oncogene. Because HCV appears to cause hepatocellular carcinoma, we evaluated the regulatory role of the HCV core protein on p53, a well known tumor suppressor gene, by an in vitro transfection assay. HCV core protein repressed transcriptional activity of the p53 promoter when tested separately in COS7 and HeLa cells. Deletion mutational analysis of the HCV core gene indicated that the regulatory domain involved in the repression of p53 transcriptional activity is located around amino acid residues 80 -122 encompassing a putative DNA binding motif and two major phosphorylation sites. Results from this study suggest that the putative core protein may have an important biological role in the promotion of cell growth by repressing p53 transcription, and this appears to be consistent with certain earlier observations about HCV core moving into the nucleus.
We have previously demonstrated that hepatitis C virus (HCV) NS5A protein promotes cell growth and transcriptionally regulates the p21/waf1 promoter, a downstream effector gene of p53. In this study, we investigated the molecular mechanism of NS5A-mediated transcriptional repression of p21/waf1. We observed that transcriptional repression of the p21/waf1 gene by NS5A is p53 dependent by using p53 wild-type (؉/؉) and null (؊/؊) cells. Interestingly, p53-mediated transcriptional activation from a synthetic promoter containing multiple p53 binding sites (PG13-LUC) was abrogated following expression of HCV NS5A. Additional studies using pull-down experiments, in vivo coimmunoprecipitation, and mammalian two-hybrid assays demonstrated that NS5A physically associates with p53. Confocal microscopy revealed sequestration of p53 in the perinuclear membrane and colocalization with NS5A in transfected HepG2 and Saos-2 cells. Together these results suggest that an association of NS5A and p53 allows transcriptional modulation of the p21/waf1 gene and may contribute to HCV-mediated pathogenesis.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.