Objective Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder leading to paralysis and subsequent death in young children. Initially considered a motor neuron disease, extra‐neuronal involvement is increasingly recognized. The primary goal of this study was to investigate alterations in lipid metabolism in SMA patients and mouse models of the disease. Methods We analyzed clinical data collected from a large cohort of pediatric SMA type I–III patients as well as SMA type I liver necropsy data. In parallel, we performed histology, lipid analysis, and transcript profiling in mouse models of SMA. Results We identify an increased susceptibility to developing dyslipidemia in a cohort of 72 SMA patients and liver steatosis in pathological samples. Similarly, fatty acid metabolic abnormalities were present in all SMA mouse models studied. Specifically, Smn2B/‐ mice displayed elevated hepatic triglycerides and dyslipidemia, resembling non‐alcoholic fatty liver disease (NAFLD). Interestingly, this phenotype appeared prior to denervation. Interpretation This work highlights metabolic abnormalities as an important feature of SMA, suggesting implementation of nutritional and screening guidelines in patients, as such defects are likely to increase metabolic distress and cardiovascular risk. This study emphasizes the need for a systemic therapeutic approach to ensure maximal benefits for all SMA patients throughout their life.
A Body Shape Index (ABSI) was specifically developed as a transformation of waist circumference (WC), statistically independent of BMI to better evaluate the relative contribution of WC to central obesity and clinical outcomes. Previous studies have found ABSI is associated with total mortality and cardiovascular events. However, no study has specifically evaluated the joint contribution of ABSI and BMI to cardio-metabolic outcomes (high triglycerides, low HDL, high fasting glucose and high blood pressure). With this aim, we performed a retrospective study on 6081 Caucasian adults. Subjects underwent a medical interview, anthropometric measurements, blood sampling, measurement of blood pressure, and measurement of visceral abdominal fat thickness (VAT) by ultrasound. Generalized linear models (GLM) were used to evaluate the sex and age adjusted association of ABSI with binary and continuous cardio-metabolic risk factors. Four pre-specified GLM were evaluated for each outcome: M1 = ABSI, BMI and ABSI*BMI interaction, M2 = ABSI and BMI, M3 = ABSI alone and M4 = BMI alone. Bayesian Information Criterion (BIC) was calculated and used to identify the best predictive model. ABSI and BMI contributed independently to all outcomes. Compared to BMI alone, the joint use of BMI and ABSI yielded significantly improved associations for having high triglycerides (BIC = 5261 vs. 5286), low HDL (BIC = 5371 vs. 5381), high fasting glucose (BIC = 6328 vs. 6337) but not high blood pressure (BIC = 6580 vs. 6580). The joint use of BMI and ABSI was also more strongly associated with VAT than BMI alone (BIC = 22930 vs. 23479). In conclusion, ABSI is a useful index for evaluating the independent contribution of WC, in addition to that of BMI, as a surrogate for central obesity on cardio-metabolic risk.
SummaryBackground & aimsDifferent neuromuscular functional domains in types I and II Spinal Muscular Atrophy (SMAI and SMAII) could lead to differences in body composition (BC) and resting energy expenditure (REE). Their identification could provide the key to defining appropriate strategies in clinical dietary management, but data comparing SMAI and SMAII in terms of BC and REE are not yet available. We measured total and regional fat (FM), lean (LBM), mineral (BMC) masses, body water (total, intra- and extra-cellular, TBW, ICW, ECW) and REE in a sample of SMAI and II children, matched for age and sex, and also adjusting for body size to compare these features of the two SMA phenotypes.Methods15 SMAI and 15 SMAII children, (M/F = 9/6 vs 9/6, age 3.6 ± 1.9 vs 3.5 ± 1.8 years, p = 0.99), confirmed genetically, were measured as follows: Anthropometric measurements [Body Weight (BW), Supine Length (SL), Arm Length (AL), Femur Length (FL), Tibia Length (TL)], Dual x-ray Energy Absorptiometry (DEXA) [total and segmental FM, LBM, FFM, and BMC], Bioelectrical impedance (BIA) [TBW, ICW, ECW] and Indirect Calorimetry (REE, respiratory quotients) were collected by the same trained dietician. BW, SL and Body Mass Index (BMI) Z-scores were calculated according to CDC Growth Charts (2000).ResultsSMA children had high percentages of FM and a lower percentage of TBW and ECW compared to the respective reference values for sex and age, whereas the BMC percentages did not differ, even splitting the two phenotypes. SMA I children had a lower BW and BMI-Z score compared to children with SMA II, but similar total and segmental FM. On the contrary, total FFM and LBM were significantly lower in SMAI (7290.0 ± 1729.1 g vs 8410.1 ± 1508.4 g; 6971.8 ± 1637.1 g vs 8041.7 ± 1427.7 g, p = 0.039, p = 0.037, respectively), particularly at the trunk level. Arm BMC also resulted significantly lower in SMAI. The measured REE values were similar (684 ± 143 kcal/day vs 703 ± 122 Kcal/day p = 0.707) whereas REE per FFM unit was higher in SMA I children than in SMA II (95 ± 12 kcal/FFMkg vs 84 ± 11 kcal/FFMkg p = 0.017).ConclusionsThis study has shown that BW and BMI Z-score measurements alone can be misleading in assessing nutritional status, particularly in SMAI. The differences between SMAI and II in total and regional BC are related only to FFM, LBM and BMC, and seem to be more linked to the magnitude of neurofunctional impairment rather than to the nutritional status derangement. SMA I and SMA II children can have different energy requirements in relation to their specific BC and hypermetabolism of FFM. Based on these results, our recommendation is to use direct BC and REE measurements in the nutritional care process until SMA-specific predictive equations become available.
Background: Late onset Pompe disease (LOPD) is a lysosomal neuromuscular disorder which can progressively impair the patients' exercise tolerance, motor and respiratory functions, and quality of life. The available enzyme replacement therapy (ERT) does not completely counteract disease progression. We investigated the effect of exercise training alone, or associated with a high-protein diet, on the exercise tolerance, muscle and pulmonary functions, and quality of life of LOPD patients on long term ERT. Methods: The patients were asked to participate to a crossover randomized study comprehending a control period (free diet, no exercise) followed by 2 intervention periods: exercise or exercise + diet, each lasting 26 weeks and separated by 13 weeks washout periods. Exercise training included moderate-intensity aerobic exercise on a cycle ergometer, stretching and balance exercises, strength training. The diet was composed by 25-30% protein, 30-35% carbohydrate and 35-40% fat. Before and after each period patients were assessed for: exercise tolerance test on a cycle-ergometer, serum muscle enzymes, pulmonary function tests and SF36 questionnaire for quality of life. Compliance was evaluated by training and dietary diaries. Patients were contacted weekly by researchers to optimize adherence to treatments. Results: Thirteen LOPD patients, median age 49 ± 11 years, under chronic ERT (median 6.0 ± 4.0 years) were recruited. Peak aerobic power (peak pulmonary O 2 uptake) decreased after control, whereas it increased after exercise, and more markedlyafter exercise + diet. Serum levels of lactate dehydrogenase (LDH) significantly decreased after exercise + diet; both creatine kinase (CK) and LDH levels were significantly reduced after exercise + diet compared to exercise. Pulmonary function showed no changes after control and exercise, whereas a significant improvement of forced expiratory volume in 1 sec (FEV1) was observed after exercise + diet. SF36 showed a slight improvement in the "mental component" scale after exercise, and a significant improvement in "general health" and "vitality" after exercise + diet. The compliance to prescriptions was higher than 70% for both diet and exercise.
Endocrine-disrupting chemicals (EDCs) are exogenous substances able to mimic or to interfere with the endocrine system, thus altering key biological processes such as organ development, reproduction, immunity, metabolism and behavior. High concentrations of EDCs are found in several everyday products including plastic bottles and food containers and they could be easily absorbed by dietary intake. In recent years, considerable interest has been raised regarding the biological effects of EDCs, particularly Bisphenol A (BPA) and phthalates, on human pregnancy and fetal development. Several evidence obtained on in vitro and animal models as well as by epidemiologic and population studies strongly indicated that endocrine disruptors could negatively impact fetal and placental health by interfering with the embryonic developing epigenome, thus establishing disease paths into adulthood. Moreover, EDCs could cause and/or contribute to the onset of severe gestational conditions as Preeclampsia (PE), Fetal Growth Restriction (FGR) and gestational diabetes in pregnancy, as well as obesity, diabetes and cardiovascular complications in reproductive age. Therefore, despite contrasting data being present in the literature, endocrine disruptors must be considered as a therapeutic target. Future actions aimed at reducing or eliminating EDC exposure during the perinatal period are mandatory to guarantee pregnancy success and preserve fetal and adult health.
Body shape index (ABSI) and triponderal mass index (TMI) have been recently associated with cardiovascular risk in adults. A cross-sectional study was conducted to evaluate the relationship between different anthropometric adiposity indexes and metabolic syndrome (MetS) in Caucasian obese children and adolescents. Consecutive obese children aged ≥7 years have been enrolled. Anthropometric parameters, body composition (by bioelectrical impedance), and systolic and diastolic blood pressure have been measured. Fasting blood samples have been analyzed for lipids, insulin, glucose. A multivariate logistic regression analyses, with body mass index z-score, waist to height ratio, ABSI z-score, TMI, conicity index as predictors for MetS (IDEFICS and IDF criteria according to age) has been performed. Four hundred and three (179 boys and 224 girls) obese children, aged 7–20 years, have been evaluated. When we explored the joint contribution of each anthropometric and adiposity index of interest and BMIz on the risk of MetS, we found that the inclusion of ABSIz improved the prediction of MetS compared to BMIz alone. ABSI-BMI can be a useful index for evaluating the relative contribution of central obesity to cardiometabolic risk in clinical management of obese children and adolescents.
Note: a In case of relapses, data related to the first diagnosis are presented first, data related to the relapse are presented after the forward slash ``/''. b Abbreviations: KPS = Karnofsky performance score, M = male, F = female, GBM = glioblastoma, OA = oligoastrocytoma, aOA = anaplastic oligoastrocytoma, aOD = anaplastic oligodendroglioma, RT = radiotherapy, TMZ = temozolomide, PCV = procarbazine, lomustine and vincristine
Both abdominal obesity and its visceral component are independently associated with cardiometabolic diseases. Among the non-modifiable and modifiable determinants, lifestyle plays a central role, while chronotype is an emerging factor. Evening type (E-Type), more active and efficient in the last part of the day, has been associated with a health-impairing style, resulting in a higher risk of obesity and cardiometabolic diseases than morning type (M-Type). However, no study has examined the contribution of chronotype to abdominal fat distribution, even considering adherence to the Mediterranean diet (MD). We conducted a cross-sectional study on 416 adults (69.5% females, 50 ± 13 years). Waist circumference (WC), visceral fat (VAT) using ultrasonography, chronotype through the reduced Morningness-Eveningness Questionnaire (rMEQ), and adherence to MD were studied. Our results showed no differences in WC and VAT between chronotypes. However, adherence to MD resulted significantly lower in the E-Types compared to M-Types. WC decreased with increasing Mediterranean score and rMEQ score, and VAT decreased with increasing rMEQ score, indicating that E-Types have +2 cm of WC and +0.5 cm of VAT compared to M-Types. In conclusion, these results showed that chronotype is independently associated with abdominal obesity and visceral fat, underlining the potential implications of the individual circadian typology on abdominal obesity.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers