The abnormal phosphorylation of tau protein on serines and threonines is a hallmark characteristic of the neurofibrillary tangles of Alzheimer's disease (AD). The discovery that tau could be phosphorylated on tyrosine and evidence that A signal transduction involved tyrosine phosphorylation led us to question whether tyrosine phosphorylation of tau occurred during the neurodegenerative process. In this study we determined that human tau tyr18 was phosphorylated by the src family tyrosine kinase fyn. By developing both polyclonal and monoclonal probes specific for phospho-tyr18, we found that the phosphorylation of tau at tyr18 occurred at early developmental stages in mouse but was absent in the adult. Our phosphospecific probes also revealed that paired helical filament preparations exhibited phospho-tyr18 reactivity that was sensitive to phosphotyrosine-specific protein phosphatase treatment. Moreover, immunocytochemical studies indicated that tyrosine phosphorylated tau was present in the neurofibrillary tangles in AD brain. However, the staining pattern excluded neuropil threads and dystrophic neurites indicating that tyrosine phosphorylated tau was distributed in AD brain in a manner dissimilar from other abnormally phosphorylated tau. We also found evidence suggesting that differentially phosphorylated tau existed within degenerating neurons. Our data add new support for a role for fyn in the neurodegenerative process.
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson’s disease (PD), Alzheimer’s disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1–42 (Aβ1–42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.
The human parahippocampal gyrus forms a large part of the limbic lobe along the ventromedial part of the temporal cortical mantle. It is a variable and complicated cortex in terms of structure, and the latter is aggravated further by interfaces with the anterior insula anteriorly and the cingulate gyrus and occipital lobe posteriorly. Additional complications relate to its lateral border with the temporal cortex and especially the sulcal configurations that define this junction. The rhinal sulcus, which separates parahippocampal and temporal cortices in other species, including the anthropoid apes, is either lacking or rudimentary in the human brain. Thus, defining this junction requires cytoarchitectural examination and precludes the use of mere inspection of sulcal existing patterns. The cortical areas that form the parahippocampal gyrus are vulnerable to pathological changes in Alzheimer's disease (AD), and its entorhinal and perirhinal subdivisions are both the most heavily damaged cortical areas and the focus for disease onset. The neurons that acquire neurofibrillary tangles (NFTs) occupy the junction of the isocortical mantle with the limbic cortical mantle, but share, or partially share, a vulnerability phenotype with large neurons in both domains. The differential expression of this phenotype across time creates the false impression of NFT spread in crosssectional comparisons of AD brains. The questions of what this phenotype is and why it is expressed first in the perirhinal and entorhinal cortices of the parahippocampal gyrus are the central molecular biological/neuroanatomical questions in understanding the etiology of AD.
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the presence of intracellular neurofibrillary tangles (NFTs) containing hyper-phosphorylated tau, and the extracellular deposition of amyloid plaques (APs) with misfolded amyloid–β (Aβ) peptide. Glia maturation factor (GMF), a highly conserved pro-inflammatory protein, isolated and cloned in our laboratory has been shown to activate glial cells leading to neuroinflammation and neurodegeneration in AD. We hypothesized that inflammatory reactions promoted by NLRP3-Caspase-1inflammasome pathway trigger dysfunction in autophagy and accumulation of Aβ which is amplified and regulated by GMF in AD. In this study, using immunohistochemical techniques we analyzed components of the NLRP3 inflammasome and autophagy-lysosomal markers in relation to Aβ, p-tau and GMF in human post-mortem AD and age-matched non-AD brains. Tissue sections were prepared from the temporal cortex of human post-mortem brains. Here, we demonstrate an increased expression of the inflammasome components NLRP3 and Caspase-1 and the products of inflammasome activation IL-1β and IL-18 along with GMF in the temporal cortex of AD brains. These inflammasome components and the pro-inflammatory cytokines co-localized with GMF in the vicinity and periphery of the amyloid plaques and NFTs. Moreover, using double immunofluorescence staining, AD brain displayed an increase in the autophagy SQSTM1/p62 and LC3 positive vesicles and the lysosomal marker LAMP1 that also co-localized with GMF, amyloid beta and hyper-phosphorylated p-tau. Our results indicate that in AD, the neuroinflammation promoted by the NLRP3 inflammasome may be amplified and regulated by GMF, which further impairs clearance of protein aggregates mediated by the autophagosomal pathway.
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Multiple sclerosis (MS) involve activation of glial cells and release of inflammatory mediators leading to death of neurons. Glia maturation factor (GMF) is up-regulated in the central nervous system (CNS) in these neurodegenerative diseases. Interleukin-33 (IL-33) is highly expressed constitutively in the CNS. We have treated mouse astrocytes, mixed culture with glial cells and neurons, and only neurons with GMF and/or IL-33 in vitro. Both GMF and IL-33-induced chemokine (C-C motif) ligand 2 (CCL2) release in a dose and time-dependent manner. We report that GMF induced IL-33 release, and that IL-33 augments GMF-induced TNF-α release from mouse astrocytes. IL-33 induces CCL2, TNF-α and nitric oxide release through phosphorylation of ERK in mouse astrocytes. Incubation of mixed culture containing glial cells and neurons or only neuronal culture with IL-33 reduced the number of neurons positive for microtubule-associated protein 2. In conclusion, IL-33 augments GMF-mediated neuroinflammation and may provide a new drug target for neurodegenerative and autoimmune diseases.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers