Numerous strains of mice with defined mutations display pronounced abnormalities of hair follicle cycling, even in the absence of overt alterations of the skin and hair phenotype; however, in order to recognize even subtle, hair cycle-related abnormalities, it is critically important to be able to determine accurately and classify the major stages of the normal murine hair cycle. In this comprehensive guide, we present pragmatic basic and auxiliary criteria for recognizing key stages of hair follicle growth (anagen), regression (catagen) and quiescence (telogen) in C57BL/6NCrlBR mice, which are largely based on previous work from other authors. For each stage, a schematic drawing and representative micrographs are provided in order to illustrate these criteria. The basic criteria can be employed for all mouse strains and require only routine histochemical techniques. The auxiliary criteria depend on the immunohistochemical analysis of three markers (interleukin-1 receptor type I, transforming growth factor-beta receptor type II, and neural cell-adhesion molecule), which allow a refined analysis of anatomical hair follicle compartments during all hair cycle stages. In contrast to prior staging systems, we suggest dividing anagen III into three distinct substages, based on morphologic differences, onset and progression of melanogenesis, and the position of the dermal papilla in the subcutis. The computer-generated schematic representations of each stage are presented with the aim of standardizing reports on follicular gene and protein expression patterns. This guide should become a useful tool when screening new mouse mutants or mice treated with pharmaceuticals for discrete morphologic abnormalities of hair follicle cycling in a highly reproducible, easily applicable, and quantifiable manner.
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-beta, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.
Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal-mesodermal interactions. After birth, mature and actively growing hair follicles eventually become anchored in the subcutis, and periodically regenerate by spontaneously undergoing repetitive cycles of growth (anagen), apoptosis-driven regression (catagen), and relative quiescence (telogen). Our molecular understanding of hair follicle biology relies heavily on mouse mutants with abnormalities in hair structure, growth, and/or pigmentation. These mice have allowed novel insights into important general molecular and cellular processes beyond skin and hair biology, ranging from organ induction, morphogenesis and regeneration, to pigment and stem cell biology, cell proliferation, migration and apoptosis. In this review, we present basic concepts of hair follicle biology and summarize important recent advances in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.