The bone tissue of femur, rib, and gastralia from three different individuals of the Middle Triassic pseudosuchian Batrachotomus kupferzellensis from southern Germany is studied. The femoral bone tissue comprises laminar fibrolamellar bone tissue throughout and is stratified by three annual growth cycles, indicating that the individual died early in its fourth year of life, at which time it had reached 87% of maximum known femur length. Thus, compared with most other Pseudosuchia (e.g., phytosaurs, aetosaurs, and most crocodylomorphs, including marine taxa), Batrachotomus achieved its large body size in a very short time by fast, although interrupted, growth and not by protracted longevity. Such fast growth as well as the organization of the tissue is similar to the condition observed in ornithodirans. The pseudosuchians Effigia and Postosuchus also show fibrolamellar tissue, but vascular density is lower when compared with Batrachotomus and dominated by a longitudinal organization of primary osteons. The rib and gastralium of Batrachotomus both show an inner spongious organization surrounded by a ring of compact, avascular, highly organized parallel-fibered and/or lamellar bone largely covered by short fibers. Maximal growth cycle count in the proximal rib sample suggests an age of at least 11 years for this individual with a reduction of growth rate after the sixth cycle.
Background
Dakosaurus and Plesiosuchus are characteristic genera of aquatic, large-bodied, macrophagous metriorhynchid crocodylomorphs. Recent studies show that these genera were apex predators in marine ecosystems during the latter part of the Late Jurassic, with robust skulls and strong bite forces optimized for feeding on large prey.Methodology/Principal FindingsHere we present comprehensive osteological descriptions and systematic revisions of the type species of both genera, and in doing so we resurrect the genus Plesiosuchus for the species Dakosaurus manselii. Both species are diagnosed with numerous autapomorphies. Dakosaurus maximus has premaxillary ‘lateral plates’; strongly ornamented maxillae; macroziphodont dentition; tightly fitting tooth-to-tooth occlusion; and extensive macrowear on the mesial and distal margins. Plesiosuchus manselii is distinct in having: non-amblygnathous rostrum; long mandibular symphysis; microziphodont teeth; tooth-crown apices that lack spalled surfaces or breaks; and no evidence for occlusal wear facets. Our phylogenetic analysis finds Dakosaurus maximus to be the sister taxon of the South American Dakosaurus andiniensis, and Plesiosuchus manselii in a polytomy at the base of Geosaurini (the subclade of macrophagous metriorhynchids that includes Dakosaurus, Geosaurus and Torvoneustes).Conclusions/SignificanceThe sympatry of Dakosaurus and Plesiosuchus is curiously similar to North Atlantic killer whales, which have one larger ‘type’ that lacks tooth-crown breakage being sympatric with a smaller ‘type’ that has extensive crown breakage. Assuming this morphofunctional complex is indicative of diet, then Plesiosuchus would be a specialist feeding on other marine reptiles while Dakosaurus would be a generalist and possible suction-feeder. This hypothesis is supported by Plesiosuchus manselii having a very large optimum gape (gape at which multiple teeth come into contact with a prey-item), while Dakosaurus maximus possesses craniomandibular characteristics observed in extant suction-feeding odontocetes: shortened tooth-row, amblygnathous rostrum and a very short mandibular symphysis. We hypothesise that trophic specialisation enabled these two large-bodied species to coexist in the same ecosystem.
BackgroundLepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole.ResultsHere we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238–240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238–249.5), and crown-group Squamata originated around 193 Mya (176–213).ConclusionA Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Many modern amphibians have biphasic life cycles with aquatic larvae and terrestrial adults. The central questions are how and when this complicated ontogeny was established, and what is known about the lives of amphibians in the Paleozoic. Fossil evidence has accumulated that sheds light on the life histories of early amphibians, the origin of metamorphosis, and the transition to a fully terrestrial existence. The majority of early amphibians were aquatic or amphibious and underwent only gradual ontogenetic changes. Developmental plasticity played a major role in some taxa but was restricted to minor modification of ontogeny. In the Permo-Carboniferous dissorophoids, a condensation of crucial ontogenetic steps into a short phase (metamorphosis) is observed. It is likely that the origin of both metamorphosis and neoteny falls within these taxa. Fossil evidence also reveals the sequence of evolutionary changes: apparently, the ontogenetic change in feeding, not the transition to a terrestrial existence per se, made a drastic metamorphosis necessary.
Aetosauria is a clade of obligately quadrupedal, heavily armoured pseudosuchians known from Upper Triassic (late Carnian–Rhaetian) strata on every modern continent except Australia and Antarctica. As many as 22 genera and 26 species ranging from 1 to 6 m in length, and with a body mass ranging from less than 10 to more than 500 kg, are known. Aetosauroides scagliai was recently recovered as the most basal aetosaur, placed outside of Stagonolepididae (the last common ancestor of Desmatosuchus and Aetosaurus). Interrelationships among the basal aetosaurs are not well understood but two clades with relatively apomorphic armour – the spinose Desmatosuchinae and the generally wide-bodied Typothoracisinae – are consistently recognized. Paramedian and lateral osteoderms are often distinctive at the generic level but variation within the carapace is not well understood in many taxa, warranting caution in assigning isolated osteoderms to specific taxa. The aetosaur skull and dentition varies across taxa, and there is increasing evidence that at least some aetosaurs relied on invertebrates and/or small vertebrates as a food source. Histological evidence indicates that, after an initial period of rapid growth, lines of arrested growth (LAGs) are common and later growth was relatively slow. The common and widespread Late Triassic ichnogenus Brachychirotherium probably represents the track of an aetosaur.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.