The inability to produce perfusable microvasculature networks capable of supporting tissue survival and of withstanding physiological pressures without leakage is a fundamental problem facing the field of tissue engineering. Microvasculature is critically important for production of bioengineered lung (BEL), which requires systemic circulation to support tissue survival and coordination of circulatory and respiratory systems to ensure proper gas exchange. To advance our understanding of vascularization after bioengineered organ transplantation, we produced and transplanted BEL without creation of a pulmonary artery anastomosis in a porcine model. A single pneumonectomy, performed 1 month before BEL implantation, provided the source of autologous cells used to bioengineer the organ on an acellular lung scaffold. During 30 days of bioreactor culture, we facilitated systemic vessel development using growth factor-loaded microparticles. We evaluated recipient survival, autograft (BEL) vascular and parenchymal tissue development, graft rejection, and microbiome reestablishment in autografted animals 10 hours, 2 weeks, 1 month, and 2 months after transplant. BEL became well vascularized as early as 2 weeks after transplant, and formation of alveolar tissue was observed in all animals ( = 4). There was no indication of transplant rejection. BEL continued to develop after transplant and did not require addition of exogenous growth factors to drive cell proliferation or lung and vascular tissue development. The sterile BEL was seeded and colonized by the bacterial community of the native lung.
Passive immunization with recombinant HCG-specific antibodies may have clinical utility as (i) diagnostic and therapeutic tools for HCG-expressing cancers and (ii) contraceptive measures.
Reversible fertility control is feasible with the HSD-hCG vaccine without impairment of ovulation or disturbance of menstrual regularity. Suggestions have been made for further optimization of the vaccine, which include replacement of TT and DT by a panel of T non B determinants communicating with the entire MHC spectrum and development of recombinant vaccine expressing beta hCG along with membrane anchored carrier.
Contraceptive research has entered a new phase of development with the advent of hybridoma and DNA recombinant technologies. During the past 5 years, significant advances have been made in this area and now it seems that realistic prospects exist for the development of contraceptive vaccines for use in humans and animals (veterinary, wild and domestic), applicable to both the female and male sexes. Contraceptive vaccines will be valuable supplements to the presently available methods of family planning, and, due to high specificity, the occurrence of limited side-effects if any, low cost and infrequent administration, contraceptive vaccines may have greater acceptability than the currently available methods. Mammalian reproduction starts with the unison of gametes contributed by the male and female partners. Both spermatozoon and oocyte have antigens on the cell surface that are unique, tissue-specific, immunogenic and accessible to antibodies, and binding of the antibodies to these antigens can cause inhibition of gamete function, resulting in a failure of fertilization. Fertilization is followed by embryogenesis, with the early embryo producing several proteins, some of which, e.g. human chorionic gonadotrophin (HCG), have a vital role in the establishment and maintenance of early pregnancy. Again, these proteins are accessible to antibodies, and their immunoneutralization can cause anti-fertility effects with loss of early embryo. Thus, the antigens derived from proteins on spermatozoa, oocyte and early embryo, especially HCG, constitute interesting molecules for the development of contraceptive vaccines. The aim of the present article is to review the current status of development of contraceptive vaccines based on antigens derived from sperm cell, oocyte zona pellucida and HCG, and to discuss their relative merits and future development.
The severe respiratory disease COVID-19 (coronavirus disease 2019) was first reported in late December 2019 in Wuhan City, China. Soon thereafter, the World Health Organization (WHO) officially declared it a pandemic. The adult population is highly affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); however, infants and children are also not spared. Transmission in the pediatric population appears to be primarily from COVID-19–positive adults, largely from family contacts through droplets, direct contacts, and aerosols. There is also evidence of fecal-oral route of transmission. The incubation period of COVID-19 in children ranges from 2 to 10 days. Most children are asymptomatic. The most common symptoms amongst symptomatic children are fever and cough. Shortness of breath, sore throat, rhinorrhea, conjunctivitis, fatigue, and headache are other common symptoms. Diarrhea, vomiting, and abdominal pain are the common gastrointestinal symptoms that may be present with or without respiratory symptoms. Very few children are likely to develop severe disease.Supportive care is the mainstay of treatment. Though data are limited, antiviral therapies such as remdesivir, favipiravir, lopinavir/ritonavir, and other drugs like hydroxychloroquine/chloroquine have been used for severe COVID-19 cases, with remdesivir showing the greatest promise. A few children may develop an exaggerated immune response, characterized by exaggerated cytokine release and manifests with features similar to Kawasaki disease. The syndrome has been referred to by many names including pediatric inflammatory multisystem syndrome (PIMS) and more recently, as multisystem inflammatory syndrome in children (MIS-C); this life-threatening condition often requires a multidisciplinary team effort and use of immunomodulators.
Different types of non-canonical basepairs, in addition to the Watson-Crick ones, are observed quite frequently in RNA. Their importance in the three dimensional structure is not fully understood, but their various roles have been proposed by different groups. We have analyzed the energetics and geometry of 32 most frequently observed basepairs in the functional RNA crystal structures using different popular empirical, semi-empirical and ab initio quantum chemical methods and compared their optimized geometry with the crystal data. These basepairs are classified into three categories: polar, non-polar and sugar-mediated, depending on the types of atoms involved in hydrogen bonding. In case of polar basepairs, most of the methods give rise to optimized structures close to their initial geometry. The interaction energies also follow similar trends, with the polar ones having more attractive interaction energies. Some of the C-H...O/N hydrogen bond mediated non-polar basepairs are also found to be significantly stable in terms of their interaction energy values. Few polar basepairs, having amino or carboxyl groups not hydrogen bonded to anything, such as G:G H:W C, show large flexibility. Most of the non-polar basepairs, except A:G s:s T and A:G w:s C, are found to be stable; indicating C-H...O/N interaction also plays a prominent role in stabilizing the basepairs. The sugar mediated basepairs show variability in their structures, due to the involvement of flexible ribose sugar. These presumably indicate that the most of the polar basepairs along with few non-polar ones act as seed for RNA folding while few may act as some conformational switch in the RNA.
Invasion of trophoblast cells is spatio-temporally regulated by various cytokines and growth factors. In pregnancy, complications like preeclampsia, shallow invasion of trophoblast cells and low amounts of epidermal growth factor (EGF) have been reported. In the present study, regulatory mechanisms associated with EGF-mediated invasion in HTR-8/SVneo trophoblastic cells have been delineated. Treatment of HTR-8/SVneo cells with EGF (10 ng/ml) led to eight fold increase (p < 0.05) in invasion. Increased invasion of HTR-8/SVneo cells by EGF was associated with an increase in phosphorylation of ERK½. In addition, significant phosphorylation of STAT1 (ser 727) and STAT3 (both tyr 705 and ser 727 residues) was also observed, accompanied by a decrease in total STAT1. Inhibition of ERK½ phosphorylation by U0126 (10 μM) led to a significant decrease in EGF-mediated invasion with simultaneous decrease in the phosphorylated forms of STAT3 and STAT1. Decrease in total STAT1 was also reversed on inhibition of ERK½. Interestingly, inhibition of STAT3 by siRNA led to a significant decrease in EGF-mediated invasion of HTR-8/SVneo cells and phosphorylation of STAT1, but it did not have any effect on the activation of ERK½. On the other hand, inhibition of STAT1 by siRNA, also led to a significant decrease in the EGF-mediated invasion of HTR-8/SVneo cells, showed concomitant decrease in ERK½ phosphorylation and STAT3 phosphorylation at ser 727 residue. These results suggest cross-communication between ERK½ and JAK-STAT pathways during EGF-mediated increase in invasion of trophoblast cells; phosphorylation at ser 727 residue of both STAT3 and STAT1 appears to be critical.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers