Abstract-It is anticipated that the satellite component of the future universal mobile telecommunications system (UMTS) will be based (partly or totally) on non-GEOstationary (non-GEO) constellations of satellites to serve mixed populations of users, each category being treated through different contracts stipulating different quality of service (QoS). In particular, we envisage a high-quality premium service which guarantees the success of each handover procedure, called guaranteed handover (GH) service, and a low-cost lower quality service called regular service, where handover failures are accepted provided that the probability of a call being unsuccessful does not exceed a given value. This paper proposes a strategy which eliminates forced call terminations due to handover failures, thus allowing the GH service. This procedure applies to low earth orbit (LEO) constellations using the satellite-fixed cell technique. An analytical model has been derived to calculate QoS parameters for a mixed population of GH and regular users. Providing both GH service to some users and regular service to other users requires an increased satellite capacity with respect to the case where all the users are served with the regular service; this capacity increase has been evaluated as a function of the percentage of GH users, the traffic load per cell, and the considered satellite mobility environment. The GH approach has been validated through the comparison with another scheme which envisages the queuing of handover requests for privileged users.
Abstract-Efficient dynamic channel allocation techniques with handover queuing suitable for applications in mobile satellite cellular networks, are discussed. The channel assignment on demand is performed on the basis of the evaluation of a suitable cost function. Geostationary and low earth orbit (LEO) satellites have been considered. In order to highlight the better performance of the dynamic techniques proposed, a performance comparison with a classical fixed channel allocation (FCA) has been carried out, as regards the probability that a newly arriving call is not completely served. It has also been shown that a higher traffic density, with respect to GEO systems, is manageable by means of LEO satellites.
This paper deals with an efficient Dynamic Channel Allocation (DCA) technique applicable to terrestrial mobile cellular networks. A channel (or resource) is a fixed frequency bandwidth (FDMA), a specific time-slot within a frame (TDMA), or a particular code (CDMA), depending on the multiple access technique used. A cost function has been defined by which the optimum channel to be assigned on demand can be selected. In addition, a suitable mobility model has been derived to determine the effects of handovers on network performance. The performance of the proposed DCA technique has been derived by computer simulations in terms of call blocking and handover failure probabilities. Comparisons with the classical Fixed Channel Allocation (FCA) technique and other dynamic allocation algorithms recently proposed in the literature have been carried out to validate the proposed technique
This paper deals with the performance evaluation of various resource management strategies that are suitable for low earth orbit-mobile satellite systems (LEO-MSS's). A user mobility model has been proposed and its statistical parameters have been derived. Both fixed channel allocation (FCA) and dynamic channel allocation (DCA) techniques have been considered. Moreover, in order to reduce the handover failure probability, we have assumed that interbeam handover requests which do not immediately obtain service can be queued. In particular, two different queuing disciplines have been compared: a) the first input first output (FIFO) scheme and b) a new technique called last useful instant (LUI) which is based on the knowledge of the maximum time within which the handover procedure must be accomplished. Implementation aspects for the LUI technique in a LEO-MSS have been discussed also in comparison with the measurement-based priority scheme (MBPS), previously proposed in the literature on this subject. The efficiency of the LUI queuing scheme as regards the FIFO technique has been investigated by simulations for both DCA and FCA techniques. An analytical approach has been also presented in order to allow the performance evaluation of the FCA scheme with different handover queuing disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.