Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.
Properly piled up: Single‐layer 2D semiconducting nanomaterials of MoS2, WS2, TiS2, TaS2, ZrS2, and graphene were fabricated through an electrochemical lithiation process (see picture). The production of single‐layer MoS2 was achieved in 92 % yield. A single‐layer MoS2‐based thin‐film transistor was fabricated, which was used for sensing NO at a detection limit of 190 ppt.
Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.
Single- and multilayer MoS(2) films are deposited onto Si/SiO(2) using the mechanical exfoliation technique. The films were then used for the fabrication of field-effect transistors (FETs). These FET devices can be used as gas sensors to detect nitrous oxide (NO). Although the single-layer MoS(2) device shows a rapid response after exposure to NO, the current was found to be unstable. The two-, three-, and four-layer MoS(2) devices show both stable and sensitive responses to NO down to a concentration of 0.8 ppm.
By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices.
Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T'-MoX (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T'-MoS crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T'-MoS is much more active than that of 2H-MoS for the electrocatalytic hydrogen evolution reaction in an acidic medium.
Single- and few-layer transition-metal dichalcogenide nanosheets, such as WSe₂ , TaS₂, and TaSe₂, are prepared by mechanical exfoliation. A Raman microscope is employed to characterize the single-layer (1L) to quinary-layer (5L) WSe₂ nanosheets and WSe₂ single crystals with a laser excitation power ranging from 20 μW to 5.1 mW. Typical first-order together with some second-order and combinational Raman modes are observed. A new peak at around 308 cm⁻¹ is observed in WSe₂ except for the 1L WSe₂, which might arise from interlayer interactions. Red shifting of the A(1g) mode and the Raman peak around 308 cm⁻¹ is observed from 1L to 5L WSe₂. Interestingly, hexagonal- and monoclinic-structured WO₃ thin films are obtained during the local oxidation of thinner (1L-3L) and thicker (4L and 5L) WSe₂ nanosheets, while laser-burned holes are found during the local oxidation of the WSe₂ single crystal. In addition, the characterization of TaS₂ and TaSe₂ thin layers is also conducted.
Recently, the field-effect transistors (FETs) with graphene as the conducting channels have been used as a promising chemical and biological sensors. However, the lack of low cost and reliable and large-scale preparation of graphene films limits their applications. In this contribution, we report the fabrication of centimeter-long, ultrathin (1-3 nm), and electrically continuous micropatterns of highly uniform parallel arrays of reduced graphene oxide (rGO) films on various substrates including the flexible polyethylene terephthalate (PET) films by using the micromolding in capillary method. Compared to other methods for the fabrication of graphene patterns, our method is fast, facile, and substrate independent. In addition, we demonstrate that the nanoelectronic FETs based on our rGO patterns are able to label-freely detect the hormonal catecholamine molecules and their dynamic secretion from living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.